Supporting Information

Molecular Isomeric Engineering of Naphtylquinoline-Containing Dinuclear Platinum Complexes to Tune Emission from Deep Red to Near Infrared

Wenjing Xiong,^{a,b} Fanyuan Meng,^{a,c} Caifa You,^a Pu Wang,^a Junting Yu,^d Xiugang Wu^b, Yong Pei, ^a Yafei Wang,^{*b} Shijian Su^{*c} and Weiguo Zhu^{*a,b}

Contents

Figure S1. The synthetic routes of dinuclear platinum complexes.

Figure S2. TGA curves of dinuclear platinum complexes.

Figure S3. Representative frontier orbitals for $(niq)_2Pt_2(\mu$ -OXT)₂.

Figure S4. Representative frontier orbitals for $(2niq)_2Pt_2(\mu$ -OXT)₂.

Figure S5. Representative frontier orbitals for $(nq)_2Pt_2(\mu$ -OXT)_{2.}

Figure S6. Representative frontier orbitals for $(2nq)_2Pt_2(\mu$ -OXT)₂.

Figure S7. Optimal structure of $(niq)_2Pt_2(\mu$ -OXT)_2 (a), $(2niq)_2Pt_2(\mu$ -OXT)_2 (b), $(nq)_2Pt_2(\mu$ -OXT)_2 (c) and $(2nq)_2Pt_2(\mu$ -OXT)_2 (d). Selected dihedral angles: (a) N2-C3-C11-C12: 26.48°, N44-C45-C53- C54: 26.74°; (b) N2-C3-C7-C8: 10.51°, N40-C41-C45-C46: 9.98°; (c) N2-C3-C6-C7: 22.66°, N39-C40-C44-C45: 24.78°; (d) N2-C3-C7-C8: 14.92°, N40-C41-C45- C46: 16.55°.

Figure S8. EL spectra of the devices of A, B, C and D at different dopant concentrations from 6 wt% and 9 wt% to 12 wt%.

Figure S9. The *J-V-R* curves of the the devices A, B, C and D at different dopant concentrations from 6 wt% and 9 wt% to 12 wt%.

Figure S10. *EQE-J* curves of the devices of A, B, C and D at different dopant concentrations from 6 wt% and 9 wt% to 12 wt%.

Figure S11. 1H NMR of $(niq)_2Pt_2(\mu\text{-}OXT)_2\,(a)$, $(nq)_2Pt_2(\mu\text{-}OXT)_2\,(b)$ and

 $(2nq)_2Pt_2(\mu\text{-}OXT)_2(c).$

Figure S12. ^{13}C NMR of $(niq)_2Pt_2(\mu\text{-}OXT)_2$ (a) , $(nq)_2Pt_2(\mu\text{-}OXT)_2$ (b) and

 $(2nq)_2Pt_2(\mu$ -OXT)₂(c).

Figure S13. MALDI-TOF MS plots of $(niq)_2Pt_2(\mu$ -OXT)₂ (a) , $(nq)_2Pt_2(\mu$ -OXT)₂ (b) and $(2nq)_2Pt_2(\mu$ -OXT)₂ (c).

Table S1. Calculated excitation energy (E), oscillator strength (f), dominant contributing transitions and associated percent contribution and assignment of complexes $(niq)_2Pt_2(\mu$ -OXT)₂, $(nq)_2Pt_2(\mu$ -OXT)₂ and $(2nq)_2Pt_2(\mu$ -OXT)₂ (c).

Figure S1. The synthetic routes of dinuclear platinum complexes.

Figure S2. TGA curves of dinuclear platinum complexes.

Figure S3. Representative frontier orbitals for (niq)₂Pt₂(µ-OXT)₂.

Figure S4. Representative frontier orbitals for $(2niq)_2Pt_2(\mu$ -OXT)_2.

Figure S5. Representative frontier orbitals for $(nq)_2Pt_2(\mu$ -OXT)_{2.}

Figure S6. Representative frontier orbitals for $(2nq)_2Pt_2(\mu$ -OXT)₂.

Figure S7. Optimal structure of $(niq)_2Pt_2(\mu$ -OXT)₂ (a), $(2niq)_2Pt_2(\mu$ -OXT)₂ (b), $(nq)_2Pt_2(\mu$ -OXT)₂ (c) and $(2nq)_2Pt_2(\mu$ -OXT)₂ (d). Selected dihedral angles: (a) N2-C3-C11-C12: 26.48°, N44-C45-

C53- C54: 26.74°; (b) N2-C3-C7-C8: 10.51°, N40-C41-C45-C46: 9.98°; (c) N2-C3-C6-C7: 22.66°, N39-C40-C44-C45: 24.78°; (d) N2-C3-C7-C8: 14.92°, N40-C41-C45- C46: 16.55°.

(C)

Figure S8. EL spectra of the devices of A, B, C and D at different dopant concentrations from 6 wt% and 9 wt% to 12 wt%.

(B)

Figure S9. The J-V-R curves of the the devices A, B, C and D at different dopant concentrations from 6 wt% and 9 wt% to 12 wt%.

(A)

(D)

Figure S10. *EQE-J* curves of the devices of A, B, C and D at different dopant concentrations from 6 wt% and 9 wt% to 12 wt%.

Figure S11. ¹H NMR of (niq)₂Pt₂(µ-OXT)₂ (a), (nq)₂Pt₂(µ-OXT)₂ (b) and (2nq)₂Pt₂(µ-OXT)₂ (c).

Figure S13. MALDI-TOF MS plots of $(niq)_2Pt_2(\mu$ -OXT)₂ (a) , $(nq)_2Pt_2(\mu$ -OXT)₂ (b) and $(2nq)_2Pt_2(\mu$ -OXT)₂ (c).

Table S1. Calculated excitation energy (E), oscillator strength (f), dominant contributing transitions and associated percent contribution and assignment of complexes $(niq)_2Pt_2(\mu$ -OXT)₂,

		E/eV	E/nm		dominant transitions		
complexes	Sn			f	(percent contribution ^b)	assignment	
$(niq)_2Pt_2(\mu$ -OXT)_2	1	2.73	454.2	0.034	HOMO → LUMO (98.7%)	MMLCT	
	2	2.94	421.8	0.003	HOMO → LUMO+1 (97.9%)	MMLCT	
	3	2.91	426.1	0.002	HOMO –1 → LUMO (98.4%)	MLLCT	
	4	3.05	406.6	0.001	HOMO –2 → LUMO (93.9%)	ILCT	
	5	3.08	402.6	0.089	HOMO –3 → LUMO (87.0%)	ILCT	
	6	3.12	397.4	0.0004	HOMO −1 → LUMO+1 (94.3%)	LLCT	
	7	3.13	396.2	0.018	HOMO –4 → LUMO (95.3%)	LLCT	
	8	3.26	380.4	0.040	HOMO –2 → LUMO+1 (94.6%)	ILCT	
	9	3.29	376.9	0.001	HOMO –3 → LUMO+1 (94.2%)	ILCT	
	10	3.34	371.3	0.007	HOMO –4 → LUMO+1 (98.1%)	LLCT	
$(nq)_2Pt_2(\mu\text{-}OXT)_2$	1	2.80	442.8	0.025	HOMO → LUMO (92.3%)	MMLCT	
	2	2.91	426.1	0.015	HOMO → LUMO+1 (89.3%)	MMLCT	
				0.015	HOMO -3 → LUMO+1 (3.4%)	LLCT	
	3	2.90	428.2	0.016	HOMO –1 → LUMO (89.9%)	MMLCT	
				0.010	HOMO \rightarrow LUMO (3.5%)	MMLCT	
	4	3.01	412.2		HOMO –1 → LUMO+1 (79.3%)	MMLCT	
				0.011	HOMO -3 → LUMO (5.5%)	LLCT	
					HOMO –2 → LUMO (5.5%)	LLCT	
					HOMO –3 → LUMO (59.7%)	LLCT	
	6	3.08	402.6	0.003	HOMO –2 → LUMO (28.7%)	LLCT	
					HOMO –2 → LUMO+1 (3.5%)	LLCT	
	9	3.17	391.2	0.038	HOMO –3 → LUMO+1 (78.5%)	LLCT	

 $(nq)_2Pt_2(\mu$ -OXT)₂ and $(2nq)_2Pt_2(\mu$ -OXT)₂ (c).^a

- HOMO $-2 \rightarrow$ LUMO+1 (10.8%) LLCT
- HOMO $-1 \rightarrow$ LUMO+1 (4.2%) LLCT

	10	3.48	356.3	0.011	HOMO –4 → LUMO (93.6%)	ILCT
	11	4.00	310.0	0.024	HOMO –5 → LUMO (91.2%)	LLCT
(2n z) Dt $(u O Y T)$	1	2 (2	471.5	0.001	HOMO –1 → LUMO (65.9%)	MMLCT
$(2nq)_2 Pt_2(\mu - OXT)_2$		2.63	4/1.5		HOMO → LUMO (26.0%)	MMLCT
	2	2.((166.2	0.000	HOMO–1 → LUMO+1 (76.5%)	MMLCT
	2	2.66	466.2	0.009	HOMO → LUMO+1 (15.9%)	MMLCT
	3	0.70		0.007	HOMO → LUMO (70.1%)	MMLCT
		2.78	446.0		HOMO –1 → LUMO (28.3%)	MMLCT
	4				HOMO → LUMO+1 (80.9%)	MMLCT
		2.83	438.2	0.004	HOMO −1 → LUMO+1 (16.9%)	LLCT
	5				HOMO –2 → LUMO (89.9%)	LLCT
		2.97	417.8	0.002	HOMO –4 → LUMO (4.8%)	LLCT
	6				HOMO –2 → LUMO+1 (87.7%)	LLCT
		3.14	394.9	0.029	HOMO –4 → LUMO+1 (6.6%)	LLCT
	11			0.005	HOMO −1 → LUMO+2 (69.1%)	LLCT
		3.47	357.3		HOMO → LUMO+2 (27.9%)	MMLCT
				0.004	HOMO −1 → LUMO+3 (66.6%)	ILCT
	21	3.84	322.9		HOMO → LUMO+4 (21.3%)	MMLCT
					HOMO −1 → LUMO+4 (4.0%)	LLCT
					HOMO –2 → LUMO+3 (88.8%)	ILCT
	32	4.09	303.2	0.246	HOMO –2 → LUMO+4 (3.7%)	LLCT

^a Computed at the DFT/B3LYP/def-tzvp. ^b The actual percent contribution = (configuration coefficient)²×2×100%