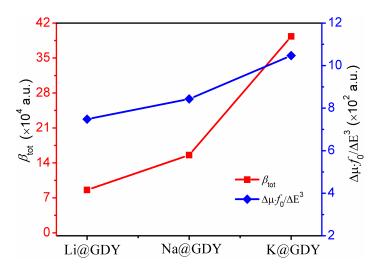
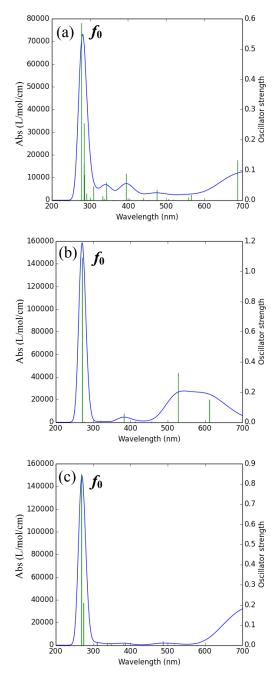
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2018

Electronic Supplementary Information


Investigations of electronic and nonlinear optical properties of single alkali-metal adsorbed graphene, graphyne and graphdiyne systems by first-principles calculations

Xiaojun Li, 1,3, Shikun Li²


¹School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, Shaanxi, P. R. China; ²Institute of Applied and Physical Chemistry, University of Bremen, Bremen D-28359, Germany; ³School of Chemical Engineering, Xi'an University, Xi'an, P. R. China

Contents:

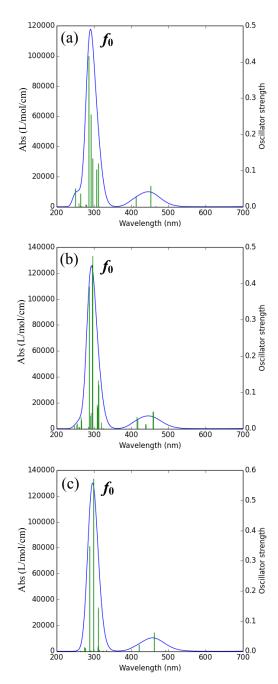

^{*}Corresponding author: E-mail: xilicms@163.com (Xiaojun Li)

Figure S1. Comparison of exactly calculated static first hyperpolarizability (β_{tot}) and estimated by two-level model ($\Delta \mu \cdot f_0 / \Delta E^3$) for these AM@GDY (AM = Li, Na, and K) complexes.

Figure S2. Simulated optical absorption spectra of (a) Li@GE, (b) Na@GE, and (c) K@GE complexes using the CAM-B3LYP method. The oscillator strengths of them are inserted.

Figure S3. Simulated optical absorption spectra of (a) Li@GY, (b) Na@GY, and (c) K@GY complexes using the CAM-B3LYP method. The oscillator strengths of them are inserted.

Table S1. Maximum oscillator strength (f_0 , in a.u.), the change in dipole moments ($\Delta\mu$, in a.u.) between ground and crucial excited states, and main transitions of crucial excited states for AM@GE, AM@GY, and AM@GDY (AM = Li, Na, K) complexes, obtained at the TD-CAM-B3LYP/6-31+G(d) level of theory.

Complexes	f_0	$\Delta \mu$	Crucial Transitions ^a
Li@GE	0.5859	5.357	α H-2 \rightarrow α L (16%)
			$\alpha H-1 \rightarrow \alpha L+1 (17\%)$
			β H-1 \rightarrow β L (16%)
			$\beta H \rightarrow \beta L + 1 (17\%)$
Na@GE	1.0916	9.719	$\alpha \text{H}2 \rightarrow \alpha \text{L (24\%)}$
			$\alpha H-1 \rightarrow \alpha L+1 (24\%)$
			β H-1 \rightarrow β L (24%)
			$\beta H \rightarrow \beta L + 1 (24\%)$
K@GE	0.8477	7.5046	$\alpha H-2 \rightarrow \alpha L (11\%)$
			$\alpha H-1 \rightarrow \alpha L+1 (11\%)$
			β H-1 \rightarrow β L (12%)
			$\beta H \rightarrow \beta L + 1 (12\%)$
Li@GY	0.4167	3.920	$\beta H \rightarrow \beta L + 2 (22\%)$
			α H-1 \rightarrow α L+1 (10%)
Na@GY	0.4767	4.646	α H-1 \rightarrow α L+1 (25%)
			$\beta H \rightarrow \beta L + 2 (29\%)$
K@GY	0.5727	5.629	α H-1 \rightarrow α L+1 (30%)
			$\beta H \rightarrow \beta L + 5 (30\%)$
Li@GDY	0.5314	3.228	$\alpha H-2 \rightarrow \alpha L (43\%)$
			β H-1 \rightarrow β L (23%)
Na@GDY	0.4349	4.374	$\alpha \text{H}2 \rightarrow \alpha \text{L (24\%)}$
			β H-1 \rightarrow β L (19%)
K@GDY	0.3344	7.044	$\alpha H-2 \rightarrow \alpha L (41\%)$
			β H-1 \rightarrow β L (13%)

 $^{^{}a}$ H = HOMO, L = LUMO.