Electronic Supplementary Information (ESI)†

Lead-free double-halide perovskite Cs₃BiBr₆ with well-defined crystal structure and high thermal stability for optoelectronics

Yingying Tang,^a Mingli Liang,^a Bingdong Chang,^b Hongyu Sun,^c Kaibo Zheng,^{a,d} Tönu Pullerits,^d Qijin Chi*^a

^{*a.*} Department of Chemistry, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

^{b.} DTU Danchip, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

^{c.} Department of Micro- and Nanotechnology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

^d. Department of Chemical Physics and NanoLund, Lund University, Box 124, 22100, Lund, Sweden

* To whom correspondence should be addressed. E-mail: cq@kemi.dtu.dk; Phone: +45 45252032

Contents:

Table S1. Crystal data and structure refinements for the Cs₃BiBr₆.

Table S2. Atomic coordinates and equivalent isotropic displacement parameters for Cs₃BiBr₆.

Table S3. Bond lengths (A) and angles (deg) for Cs₃BiBr₆.

Table S4. Anisotropic displacement parameters for Cs₃BiBr₆.

Table S5. Crystallographic and electronic parameters for the known perovskites.

Fig. S1 View of the structures constructed by (a) Bi1 and (b) Bi2, respectively.

Fig. S2 Comparison of XRD pattern for Cs₃BiBr₆, Rb₃BiBr₆, Cs₃BiCl₆.

Fig. S3 TGA curves of Cs₃BiBr₆ and CH₃NH₃PbBr₃.

Fig. S4 (a) Electron micrograph of the microstructure for the photodetector. (b)-(d) Energy dispersive X-ray (EDX) mapping of the element distribution: (b) Br, (c) Cs, (d) Bi.

Fig. S5 EQE versus voltage under light illumiantion of 4 mW/cm² and 25 mW/cm².

Fig. S6 The high-resolution I-t curve of Cs_3BiBr_6 devices towards 400 nm illumination with a powder intensity of 25 mW/cm².

Fig. S7 Photoresponse of Cs_3BiBr_6 under white light illumination with power density of 350 mW/cm².

Fig. S8 EQE versus voltage under light illumination of 4 mW/cm² and 25 mW/cm².

Fig. S9 The high-resolution I-t curve of $Cs3BiBr_6$ devices towards 400 nm illumination with a powder intensity of 25 mW/cm².

Fig. S10 Photoresponse of Cs_3BiBr_6 under white light illumination with power density of 350 mW/cm².

Fig. S11 The stability for the photodetector under light illumination.

formula	Cs ₃ BiBr ₆		
fw	1087.11		
<i>Т,</i> К	room temp		
λ <i>,</i> Å	0.71073		
space group	Pbcm		
<i>a,</i> Å	8.689(2)		
<i>b,</i> Å	13.628(1)		
<i>c,</i> Å	27.694(9)		
α , deg	90		
<i>β,</i> deg	90		
γ, deg	90		
<i>V</i> , Å ³	3279.5(6)		
Z	8		
$D_{\rm calcd}$, g cm ⁻³	4.404		
μ , mm ⁻¹	31.89		
GOF on F ²	1.062		
R1,wR2 [<i>l</i> >2σ(<i>l</i>)] ^a	0.0495, 0.1412		
R1,wR2(all data)	0.0794, 0.1603		
a R1 = $\sum F_{o} - F_{c} / \sum F_{o} , w$ R2 = { $\sum w[(F_{o})^{2} - (F_{c})^{2}]^{2} / \sum w[(F_{o})^{2}]^{2}$ }			

Table S1. Crystal data and structure refinements for the Cs_3BiBr_6 .

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å 2 ×10³) for Cs₃BiBr₆. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Atom	x	У	Z	U(eq)
Bi(1)	7451(1)	806(1)	2500	22(1)
Bi(2)	-2141(1)	-2500	0	21(1)
Cs(3)	3140(1)	-939(1)	1546(1)	35(1)
Cs(2)	8180(1)	-2461(1)	1615(1)	37(1)
Br(5)	6001(1)	-1075(1)	2500	31(1)
Br(6)	8801(1)	2722(1)	2500	30(1)
Br(7)	-2221(2)	-4191(1)	588(1)	57(1)
Br(4)	294(1)	-1717(1)	582(1)	47(1)
Br(3)	9470(1)	202(1)	1752(1)	48(1)
Br(2)	5486(1)	1392(1)	1720(1)	46(1)
Br(1)	-4459(1)	-3387(1)	-581(1)	51(1)
Cs(1)	-2566(1)	-5855(1)	-493(1)	70(1)

Bi(1)-Br(3)	2.8360(9)	Bi(1)-Br(3)#1	2.8360(8)
Bi(1)-Br(5)	2.8557(11)	Bi(1)-Br(6)	2.8628(11)
Bi(1)-Br(2)	2.8671(8)	Bi(1)-Br(2)#1	2.8671(8)
Bi(2)-Br(7)	2.8233(8)	Bi(2)-Br(7)#2	2.8233(8)
Bi(2)-Br(1)	2.8484(9)	Bi(2)-Br(1)#2	2.8484(9)
Bi(2)-Br(4)	2.8655(9)	Bi(2)-Br(4)#2	2.8655(9)
Cs(3)-Br(1)#5	3.5117(10)	Cs(3)-Br(3)#4	3.5927(11)
Cs(3)-Br(6)#6	3.6278(9)	Cs(3)-Br(5)	3.6329(10)
Cs(3)-Br(7)#7	3.6528(11)	Cs(3)-Br(4)	3.7906(10)
Cs(3)-Br(2)	3.8048(11)	Cs(3)-Br(2)#6	3.8593(11)
Cs(2)-Br(4)#10	3.5490(10)	Cs(2)-Br(2)#6	3.5602(11)
Cs(2)-Br(6)#11	3.5980(10)	Cs(2)-Br(5)	3.6266(10)
Cs(2)-Br(7)#10	3.7120(11)	Cs(2)-Br(3)#11	3.8028(11)
Cs(2)-Br(3)	3.8167(10)	Cs(2)-Br(1)#5	3.8463(12)
Cs(2)-Bi(2)#10	4.4827(5)	Cs(1)-Br(4)#15	3.7600(11)
Cs(1)-Br(4)#9	3.8610(13)	Cs(1)-Br(2)#3	3.8665(13)
Cs(1)-Br(3)#3	4.0110(15)	Cs(1)-Br(1)#16	4.0743(15)
Cs(1)-Br(7)#9	4.1682(17)	Cs(1)-Cs(1)#17	5.2503(15)
Cs(1)-Cs(3)#9	5.2774(9)	Cs(1)-Cs(3)#3	5.3291(9)
Cs(1)-Cs(2)#18	5.4278(10)	Br(3)-Bi(1)-Br(3)#1	93.79(5)
Br(3)-Bi(1)-Br(5)	90.73(3)	Br(3)-Bi(1)-Br(6)	90.63(3)
Br(5)-Bi(1)-Br(6)	178.01(3)	Br(3)-Bi(1)-Br(2)	84.22(3)
Br(3)#1-Bi(1)-Br(2)	178.01(3)	Br(5)-Bi(1)-Br(2)	89.28(3)
Br(6)-Bi(1)-Br(2)	89.42(3)	Br(3)-Bi(1)-Br(2)#1	178.01(3)
Br(3)#1-Bi(1)-Br(2)#1	84.22(3)	Br(5)-Bi(1)-Br(2)#1	89.28(3)
Br(6)-Bi(1)-Br(2)#1	89.42(3)	Br(2)-Bi(1)-Br(2)#1	97.78(4)
Br(7)-Bi(2)-Br(7)#2	177.18(6)	Br(7)-Bi(2)-Br(1)	87.83(3)
Br(7)#2-Bi(2)-Br(1)	90.18(3)	Br(1)-Bi(2)-Br(1)#2	89.98(5)
Br(7)-Bi(2)-Br(4)	89.87(3)	Br(7)#2-Bi(2)-Br(4)	92.21(3)
Br(1)-Bi(2)-Br(4)	176.51(3)	Br(1)#2-Bi(2)-Br(4)	92.66(3)
Br(4)-Bi(2)-Br(4)#2	84.81(4)	Br(7)-Bi(2)-Cs(2)#3	124.57(2)
Br(7)#2-Bi(2)-Cs(2)#3	55.64(2)	Br(1)-Bi(2)-Cs(2)#3	58.31(2)
Br(1)#2-Bi(2)-Cs(2)#3	127.82(2)	Br(4)-Bi(2)-Cs(2)#3	121.32(2)
Br(4)#2-Bi(2)-Cs(2)#3	52.301(19)	Br(7)#2-Bi(2)-Cs(2)#4	124.57(2)
Br(1)-Bi(2)-Cs(2)#4	127.82(2)	Cs(2)#3-Bi(2)-Cs(2)#4	172.876(17)
Br(1)#5-Cs(3)-Br(3)#4	139.59(3)	Br(1)#5-Cs(3)-Br(6)#6	134.31(3)
Br(3)#4-Cs(3)-Br(6)#6	71.90(2)	Br(1)#5-Cs(3)-Br(5)	97.66(3)
Br(3)#4-Cs(3)-Br(5)	120.91(3)	Br(6)#6-Cs(3)-Br(5)	76.27(2)
Br(1)#5-Cs(3)-Br(7)#7	75.40(3)	Br(3)#4-Cs(3)-Br(7)#7	68.88(3)
Br(6)#6-Cs(3)-Br(7)#7	139.06(3)	Br(5)-Cs(3)-Br(7)#7	135.33(3)
Br(1)#5-Cs(3)-Br(4)	77.20(3)	Br(3)#4-Cs(3)-Br(4)	69.78(2)
Br(6)#6-Cs(3)-Br(4)	93.95(2)	Br(5)-Cs(3)-Br(4)	160.80(3)
Br(7)#7-Cs(3)-Br(4)	61.86(2)	Br(1)#5-Cs(3)-Br(2)	89.80(3)
Br(3)#4-Cs(3)-Br(2)	95.41(3)	Br(6)#6-Cs(3)-Br(2)	125.24(2)
Br(5)-Cs(3)-Br(2)	65.41(2)	Br(7)#7-Cs(3)-Br(2)	70.43(2)
Br(4)-Cs(3)-Br(2)	132.26(2)	Br(1)#5-Cs(3)-Br(2)#6	70.40(2)
Br(3)#4-Cs(3)-Br(2)#6	131.49(3)	Br(6)#6-Cs(3)-Br(2)#6	65.06(2)
Br(5)-Cs(3)-Br(2)#6	69.46(2)	Br(7)#7-Cs(3)-Br(2)#6	140.61(3)
Br(4)-Cs(3)-Br(2)#6	91.49(3)	Br(2)-Cs(3)-Br(2)#6	127.246(16)

Table S3. Bond lengths (Å) and angles (deg) for Cs_3BiBr_6 .

D=(1)#5 C=(2) C=(2)#4	110.00/2)	$D_{2}(2) \# A_{2}(2) = C_{2}(2) \# A_{2}(2)$	E1 024(17)
Br(1)#5-Cs(3)-Cs(2)#4	116.88(2)	Br(3)#4-Cs(3)-Cs(2)#4	51.834(17)
BI(0)#0-CS(3)-CS(2)#4	48.245(17)	Br(3)-Cs(3)-Cs(2)#4	124.39(2)
Br(7) #7-Cs(3)-Cs(2)#4	96.59(2)	Br(4)-Cs(3)-Cs(2)#4	47.135(16)
Br(2)-Cs(3)-Cs(2)#4	147.04(2)	Br(2)#6-Cs(3)-Cs(2)#4	82.247(19)
Br(1)#5-Cs(3)-Cs(2)	51.81(2)	Br(3)#4-Cs(3)-Cs(2)	168.55(2)
Br(6)#6-Cs(3)-Cs(2)	100.12(2)	Br(5)-Cs(3)-Cs(2)	48.030(16)
Br(7)#7-Cs(3)-Cs(2)	120.33(2)	Br(4)-Cs(3)-Cs(2)	119.82(2)
Br(2)-Cs(3)-Cs(2)	82.421(18)	Br(2)#6-Cs(3)-Cs(2)	46.561(17)
Cs(2)#4-Cs(3)-Cs(2)	128.764(18)	Br(1)#5-Cs(3)-Cs(2)#8	115.06(2)
Br(3)#4-Cs(3)-Cs(2)#8	50.589(17)	Br(6)#6-Cs(3)-Cs(2)#8	110.54(2)
Br(5)-Cs(3)-Cs(2)#8	100.47(2)	Br(7)#7-Cs(3)-Cs(2)#8	49.021(18)
Br(4)-Cs(3)-Cs(2)#8	98.42(2)	Br(2)-Cs(3)-Cs(2)#8	46.383(17)
Br(2)#6-Cs(3)-Cs(2)#8	169.52(2)	Cs(2)#4-Cs(3)-Cs(2)#8	101.992(12)
Cs(2)-Cs(3)-Cs(2)#8	128.753(15)	Br(1)#5-Cs(3)-Cs(1)#9	54.49(2)
Br(3)#4-Cs(3)-Cs(1)#9	111.25(2)	Br(6)#6-Cs(3)-Cs(1)#9	86.661(19)
Br(5)-Cs(3)-Cs(1)#9	115.10(2)	Br(7)#7-Cs(3)-Cs(1)#9	96.77(2)
Br(4)-Cs(3)-Cs(1)#9	46.948(19)	Br(2)-Cs(3)-Cs(1)#9	144.28(2)
Br(2)#6-Cs(3)-Cs(1)#9	46.972(19)	Br(4)#10-Cs(2)-Br(2)#6	130.86(3)
Br(4)#10-Cs(2)-Br(6)#11	98.75(2)	Br(2)#6-Cs(2)-Br(6)#11	128.84(3)
Br(4)#10-Cs(2)-Br(5)	131.80(3)	Br(2)#6-Cs(2)-Br(5)	72.94(2)
Br(6)#11-Cs(2)-Br(5)	83.38(2)	Br(4)#10-Cs(2)-Br(7)#10	67.16(2)
Br(2)#6-Cs(2)-Br(7)#10	72.51(3)	Br(6)#11-Cs(2)-Br(7)#10	129.35(3)
Br(5)-Cs(2)-Br(7)#10	143.10(3)	Br(4)#10-Cs(2)-Br(3)#11	92.38(3)
Br(2)#6-Cs(2)-Br(3)#11	95.99(3)	Br(6)#11-Cs(2)-Br(3)#11	66.32(2)
Br(5)-Cs(2)-Br(3)#11	130.47(3)	Br(7)#10-Cs(2)-Br(3)#11	66.08(2)
Br(4)#10-Cs(2)-Br(3)	69.92(2)	Br(2)#6-Cs(2)-Br(3)	132.25(3)
Br(6)#11-Cs(2)-Br(3)	69.66(3)	Br(5)-Cs(2)-Br(3)	65.87(2)
Br(7)#10-Cs(2)-Br(3)	135.06(3)	Br(3)#11-Cs(2)-Br(3)	128.952(17)
Br(4)#10-Cs(2)-Br(1)#5	67.81(2)	Br(2)#6-Cs(2)-Br(1)#5	70.08(2)
Br(6)#11-Cs(2)-Br(1)#5	157.06(3)	Br(5)-Cs(2)-Br(1)#5	92.02(2)
Br(7)#10-Cs(2)-Br(1)#5	64.18(2)	Br(3)#11-Cs(2)-Br(1)#5	130.25(2)
Br(3)-Cs(2)-Br(1)#5	87.91(3)	Br(4)#10-Cs(2)-Bi(2)#10	39.705(15)
Br(2)#6-Cs(2)-Bi(2)#10	91.17(2)	Br(6)#11-Cs(2)-Bi(2)#10	136.53(2)
Br(5)-Cs(2)-Bi(2)#10	130.393(19)	Br(7)#10-Cs(2)-Bi(2)#10	38.893(14)
Br(3)#11-Cs(2)-Bi(2)#10	97.059(19)	Br(3)-Cs(2)-Bi(2)#10	97.40(2)
Br(1)#5-Cs(2)-Bi(2)#10	39.062(14)	Br(4)#10-Cs(2)-Cs(3)#10	51.523(16)
Br(2)#6-Cs(2)-Cs(3)#10	177.59(2)	Br(6)#11-Cs(2)-Cs(3)#10	48.779(16)
Br(5)-Cs(2)-Cs(3)#10	105.75(2)	Br(7)#10-Cs(2)-Cs(3)#10	109.21(2)
Br(3)#11-Cs(2)-Cs(3)#10	83.313(19)	Br(3)-Cs(2)-Cs(3)#10	47.739(17)
Br(1)#5-Cs(2)-Cs(3)#10	112.13(2)	Bi(2)#10-Cs(2)-Cs(3)#10	91.205(13)
Br(4)#10-Cs(2)-Cs(3)	108.27(2)	Br(2)#6-Cs(2)-Cs(3)	51.916(18)
Br(6)#11-Cs(2)-Cs(3)	130.99(2)	Br(5)-Cs(2)-Cs(3)	48.140(17)
Br(7)#10-Cs(2)-Cs(3)	99.02(2)	Br(3)#11-Cs(2)-Cs(3)	147.90(2)
Br(3)-Cs(2)-Cs(3)	82,11(2)	Br(1)#5-Cs(2)-Cs(3)	45.860(15)
Br(4)#10-Cs(2)-Cs(3)#6	111.53(2)	Br(2)#6-Cs(2)-Cs(3)#6	50.687(18)
Br(6)#11-Cs(2)-Cs(3)#6	105.37(2)	Br(5)-Cs(2)-Cs(3)#6	114,19(2)
Br(7)#10-Cs(2)-Cs(3)#6	47,979(16)	Br(3)#11-Cs(2)-Cs(3)#6	46,881(17)
Br(3)-Cs(2)-Cs(3)#6	175 04(2)	Br(1)#5-Cs(2)-Cs(3)#6	97.03(2)
Br(1)-Cs(1)-Br(4)#15	124,20(3)	Br(1)-Cs(1)-Br(7)	63,09(2)
Br(4)#15-Cs(1)-Br(7)	61,13(2)	Br(1)-Cs(1)-Br(4)#9	171 21(<u>4</u>)
Br(4)#15-Cs(1)-Br(4)#9	60 93(2)	Br(7)-Cs(1)-Br(4)#9	121 71(3)
	00.00(2)		

Br(1)-Cs(1)-Br(2)#3	85.43(2)	Br(4)#15-Cs(1)-Br(2)#3	150.04(3)
Br(7)-Cs(1)-Br(2)#3	147.92(3)	Br(4)#9-Cs(1)-Br(2)#3	90.32(2)
Br(1)-Cs(1)-Br(3)#3	86.44(3)	Br(4)#15-Cs(1)-Br(3)#3	121.74(3)
Br(7)-Cs(1)-Br(3)#3	121.50(3)	Br(4)#9-Cs(1)-Br(3)#3	84.79(2)
Br(2)#3-Cs(1)-Br(3)#3	58.05(2)	Br(1)-Cs(1)-Br(1)#16	89.81(3)
Br(4)#15-Cs(1)-Br(1)#16	71.08(2)	Br(7)-Cs(1)-Br(1)#16	67.83(3)
Br(4)#9-Cs(1)-Br(1)#16	98.84(3)	Br(2)#3-Cs(1)-Br(1)#16	108.43(3)
Br(3)#3-Cs(1)-Br(1)#16	166.20(3)	Br(1)-Cs(1)-Br(7)#9	114.83(3)
Br(4)#15-Cs(1)-Br(7)#9	62.02(2)	Br(7)-Cs(1)-Br(7)#9	87.81(3)
Br(4)#9-Cs(1)-Br(7)#9	59.91(2)	Br(2)#3-Cs(1)-Br(7)#9	112.59(3)
Br(3)#3-Cs(1)-Br(7)#9	60.10(2)	Br(1)#16-Cs(1)-Br(7)#9	133.08(3)

Symmetry transformations used to generate equivalent atoms: #1 x,y,-z+1/2; #2 x,-y-1/2,-z; #3 x-1,-y-1/2,-z; #4 x-1,y,z; #5 x+1,-y-1/2,-z; #6 -x+1,y-1/2,z; #7 -x,y+1/2,z; #8 -x+1,y+1/2,z; #9 -x,y-1,-z; #10 x+1,y,z; #11 -x+2,y-1/2,z; #12 -x+2,y+1/2,-z+1/2; #13 -x+2,y+1/2,z; #14 x+1,y+1/2,-z+1/2; #15 -x,y-1/2,z; #16 -x-1,-y-1,-z; #17 x,-y-3/2,-z; #18 -x+1,-y-1,-z.

Table S4. Anisotropic displacement parameters ($Å^2 \times 10^3$) for Cs₃BiBr₆. The anisotropic displacement factor exponent takes the form: -2 π^2 [h^2 a^{*2} U11 + ... + 2 h k a*b*U12].

atom	U11	U22	U33	U23	U13	U12
Bi(1)	19(1)	22(1)	25(1)	0	0	2(1)
Bi(2)	25(1)	20(1)	19(1)	0(1)	0	0
Cs(3)	28(1)	46(1)	32(1)	6(1)	2(1)	2(1)
Cs(2)	32(1)	47(1)	30(1)	-3(1)	1(1)	0(1)
Br(5)	33(1)	28(1)	33(1)	0	0	-4(1)
Br(6)	32(1)	26(1)	32(1)	0	0	-2(1)
Br(7)	114(1)	25(1)	32(1)	9(1)	-6(1)	-2(1)
Br(4)	45(1)	65(1)	31(1)	-9(1)	-1(1)	-27(1)
Br(3)	50(1)	40(1)	55(1)	-6(1)	29(1)	5(1)
Br(2)	50(1)	41(1)	47(1)	4(1)	-24(1)	8(1)
Br(1)	48(1)	60(1)	46(1)	-2(1)	-21(1)	-17(1)
Cs(1)	103(1)	58(1)	47(1)	-9(1)	-19(1)	29(1)

Table S5. Crystallographic and electronic parameters for the known perovskites.

	Space group	а	b	С
Cs ₃ BiCl ₆	C2/c	27.017	8.252	13.121
Rb ₃ BiBr ₆	Pnma	13.311	26.63	8.603
Cs₂SnCl ₆	Fm-3m	10.347	10.347	10.347
Cs ₂ SnBr ₆	Fm-3m	10.771	10.771	10.771
Cs₂SnI ₆	Fm-3m	11.631	11.631	11.631
Cs ₂ AgInCl ₆	Fm-3m	10.469	10.469	10.469
Cs₃BiBr ₆	Pbcm	8.689	13.628	27.694

Fig. S1 View of the structures constructed by (a) Bi1, Cs3; and (b) Bi1, Bi2, Cs3 on the mirror plane, respectively.(c) A basic unit constructed from the Bi1, Bi2, Cs3. Color code: Bi1, red; Bi2, purple; Cs1, green; Cs2, orange; Cs3, blue; Br, Brown.

Fig. S2 Comparison of XRD pattern for Cs₃BiBr₆, Rb₃BiBr₆, Cs₃BiCl₆.

Fig. S3 The bandgap calculated from the DFT.

Fig. S4 The PL spectra for the Cs_3BiBr_6 .

Fig. S5 TGA curves of Cs_3BiBr_6 and $CH_3NH_3PbBr_3$.

Fig. S6 (a) Electron micrograph of the microstructure for the photodetector. (b)-(d) Energy dispersive X-ray (EDX) mapping of the element distribution: (b) Br, (c) Cs, (d) Bi.

Fig. S7 (a) I-V characteristics under different power density. (b) Photocurrent responses under various light densities at bias voltage of 0- 6 V. (c) Comparison of the detectivity at two different light densities.

Fig. S8 EQE versus voltage under light illumiantion of 4 mW/cm² and 25 mW/cm².

Fig. S9 The high-resolution I-t curve of $Cs3BiBr_6$ devices towards 400 nm illumination with a powder intensity of 25 mW/cm².

Fig. S10 Photoresponse of Cs_3BiBr_6 under white light illumination with power density of 350 mW/cm².

Fig. S11 The stability for the photodetector under light illumination.