Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

"Growth, Morphology and Structure of Mixed Pentacene Films", Daphné Lubert-Perquel et al.

Note 1

A raw ω -scan of the 100 % pentacene sample was taken at the position of bulk polymorph, $2\theta = 12.4^{\circ}$ at tilt angle $\Psi = 0$ and 5°. The scan confirms the presence of the bulk polymorph when the sample is tilted at $\Psi = 5^{\circ}$, whereas the contribution is negligible when $\Psi = 0^{\circ}$.

Figure S 1 ω scan centered at the bulk phase $2\theta = 12.4^{\circ}$ and with tilt angles of $\psi = 0$ and 5° for the 100% pentacene film grown at 0.5 Å/s with 200 nm thickness

Note 2

As mentioned in the main text, the lateral grain size was estimated from the AFM images using the threshold determination of grain boundaries in Gwyddion.¹ The thresholds are shown in Figure 2 as a red filter over the micrographs. The calculated sizes, expressed as diameters of spherical particles of identical area, are shown in Table S2.

Pentacene Concentration		Grain size
	(%)	(nm)
	0	2133
	0.5	743
	5	373
	10	399
	50	338
	100	467

Table S 2 Lateral grain size calculated using the AFM micrographs. Average length given to the nearest nm due to accuracy of ± 1 nm.

Figure S 2 AFM images of the mixed films with concentrations **a**, 0% **b**, 0.5% **c**, 5% **d**, 10% **e**, 50% **f**, 100% pentacene in *p*-terphenyl with a red filter showing the threshold boundaries used to calculate average grain area.

1 D. Nečas and P. Klapetek, Gwyddion: An open-source software for SPM data analysis, *Cent. Eur. J. Phys.*, 2012, **10**, 181–188.