Electronic supplementary information

Diverse sensor responses from two functionalized

tris(phthalocyaninato) Europium ambipolar semiconductors

towards three oxidative and reductive gases

Shanshan Liu,^a Haoyuan Wang,^a Xiangyang Wang,^a Shaoren Li,^a Heyuan Liu,^a

Yanli Chen,*^a Xiyou Li*^a

^a College of Science, China University of Petroleum (East China), Qingdao 266580, China.

Corresponding Author

*E-mail: yanlichen@upc.edu.cn (Y. Chen) and xiyouli@upc.edu.cn (X. Li)

Caption of Content

Fig.S1. Experimental isotopic pattern for the molecular ion of compounds **1-2** shown in the MALDI-TOF mass spectrum.

Fig.S2. ¹H NMR spectrum of compounds 1-2 in CDCl₃.

Fig.S3. The molecular dimension of compounds **1-2** obtained using PCMODEL for windows Version 6.0, Serena Software.

Fig.S4. Polarized UV-vis spectra of the LS films of 1-2.

Fig.S5. XRD pattern recorded in in-plane (grazing incidence) mode for the LS films of 1(A)-**2**(B).

Fig.S6. Output characteristics (I_{ds} vs. V_{ds}) of ambipolar OFET device based on LS films of 1 (A-B) and 2 (C-D).

Fig.S7. The recovery time for 1-2 films exposed to NO_2 at varied concentration in the range of 0.1-0.85 ppm (exposure: 2 min).

Fig.S8. The time-dependent current evolution curves of the three toxic gases (H_2S , NH_3 , and NO_2) in a sequential testing for LS films of 1(A) and (B).

Fig.S9. The response of the devices for compound 1(A)-2(B) under 0.45 ppm NO₂ exposure of 2 min and 10 min.

Table S1. The orientation angle of the phthalocyanine ring determined from polarized UV-vis absorbance of the LS films of compounds **1-2**.

Table S2. The gate-induced sheet carrier densities (*n*) of the LS films of compounds 1-2.

Fig.S1. Experimental isotopic pattern for the molecular ion of $Eu_2[Pc(OC_8H_{17})_8]_2[Pc(OCH_2CF_3)_8]$ (A) and $Eu_2\{Pc[(OC_2H_4)_3OCH_3]_8\}_2[Pc(OCH_2CF_3)_8]$ (B) shown in the MALDI-TOF mass spectrum.

Fig.S2. ¹H NMR spectrum of $Eu_2[Pc(OC_8H_{17})_8]_2[Pc(OCH_2CF_3)_8]$ (A) and $Eu_2\{Pc[(OC_2H_4)_3OCH_3]_8\}_2[Pc(OCH_2CF_3)_8]$ (B) in CDCl₃.

Fig.S3. The molecular dimension of $Eu_2[Pc(OC_8H_{17})_8]_2[Pc(OCH_2CF_3)_8](A)$: 3.32 nm (length) × 0.95 nm (height), $Eu_2\{Pc[(OC_2H_4)_3OCH_3]_8\}_2[Pc(OCH_2CF_3)_8](B)$: 3.17 nm(length) × 0.95 nm (height) obtained using PCMODEL for windows Version 6.0, Serena Software.

Fig.S4. Polarized UV-vis spectra of compounds **1-2** (A-B) LS films. 0 and 45° represent the angle between the light and the normal of the substrate, respectively, while "A// and A \perp " represent the absorbance for light polarized with the electric vector parallel and perpendicular to the dipping direction.

Fig.S5. XRD pattern recorded in in-plane (grazing incidence) mode for the LS films of 1(A)-2(B).

•

Fig.S6. Current–voltage output plots (I_{ds} vs. V_{ds}) of ambipolar OFET device based on LS films of **1** (A) and **2** (B) deposited on HMDS-treated SiO₂/Si (300 nm) substrate with Au top contacts with various V_G for *p*-channel (left column of A and B) measured in air and for *n*-channel (right column of A and B) measured in N₂, respectively.

Fig.S7. The recovery time for **1-2** films exposed to NO_2 at varied concentration in the range of 0.1-0.85 ppm (exposure:2 min)

Fig.S8. The time-dependent current evolution curves of the three toxic gases (H_2S of 5 ppm, NH₃ of 5 ppm, and NO₂ of 0.5 ppm) in a sequential testing for LS films of **1**(A) and **2**(B), the color columns represent exposure time.

Fig.S9. The response of the devices for compound 1(A)-2(B) under 0.45 ppm NO₂ exposure of 2 min and 10 min.

Table S1. The orientation angle of the phthalocyanine ring determined from polarized UV-vis absorbance of the LS films of compounds **1-2**.

Compound	A//	A⊥	D 0° (A///A⊥)	A//	$A \bot$	D 45° (A// A⊥)	θο
1	0.156	0.162	0.96	0.150	0.179	0.84	64.7
2	0.145	0.127	1.14	0.106	0.131	0.81	28.1

Table S2. The gate-induced sheet carrier densities (*n*) of the LS films of compounds 1-2.

Cpds	$\frac{n_{\rm e}/{\rm cm}^{-2}}{(0 {\rm V})^{\rm a}}$	$n_h/{\rm cm}^{-2}$ (0 V) ^a	<i>n</i> _e /cm ⁻² (40 V) ^a	$n_h/{\rm cm}^{-2}$ (40 V) ^a
1	2.48×10^{12}	8.31×10 ⁹	7.68×10^{13}	1.03×10^{12}
2	1.77×10^{12}	$8.01\!\times\!10^{10}$	4.52×10^{12}	3.90×10 ¹²

^a Calculated from $n = (I_{ds}/V_{ds})(L/W)(1/\mu e)$, where I_{ds} is the source–drain current, V_{ds} the source–drain voltage, W the channel width(28.6 mm), L the channel length (0.24 mm), μ the carrier mobility.

In the present system, the carrier densities were calculated at $V_G=0$ V and 40 V, respectively. The values of (I_{ds}/V_{ds}) is the slope values of linear region of output characterics when $V_G=0$ V and 40 V, respectively. As seen in Table S2, both n_e and n_h at 40 V are higher than n_e and n_h at 0 V, which means the gate voltage is an important influence factor of carrier densities. However, no matter 0 V or 40 V,

the n_e of **2** is always smaller than n_e of **1**, the n_h of **1** is always smaller than n_h of **2**. Note that in the main text, only the carrier densities at V_G=0 V were listed in Table 2, representing an original status before gases inject.