Supporting Information

Nondoped blue fluorescent organic light-emitting diodes based on benzonitrile-anthracene derivative with 10.06 % external quantum efficiency and low efficiency roll-off

Wei Liu,^a Shian Ying,^b Runda Guo,^a Xianfeng Qiao,^b Panpan Leng,^a Qing Zhang,^a Yaxiong Wang,^a Dongge Ma^{*b} and Lei Wang^{*a}

^a Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China.

^b Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China.

*Email: msdgma@scut.edu.cn, wanglei@mail.hust.edu.cn

Content

- 1. Solvatochromic effect.
- 2. Fig. S1. Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC) curves.
- **3.** Table S1. Nondoped electroluminescent performances for some representative blueemitting materials.
- 4. Table S2. The absorption and emission peak positions in different solvents.
- 5. Fig. S2. The absorption (UV) spectra of AnBzt in dichloromethane.
- 6. Fig. S3. Schematic molecular conformations and interactions of 3CzAnBzt in the crystal.
- 7. Fig. S4. Schematic molecular conformations and interactions of *p*CzAnBzt in the crystal.
- 8. Fig. S5. The PL spectra of 3CzAnBzt and *p*CzAnBzt in different solvents.
- 9. Fig. S6. Fitted line of Δf and $v_a v_f$ for 3CzAnBzt and *p*CzAnBzt.
- 10. Table S3. Crystal data.
- 11. Fig. S7. Cyclic voltammetric scans.
- 12. Fig. S8. NTOs of 3CzAnBzt.
- 13. Fig. S9. NTOs of *p*CzAnBzt.
- 14. Fig. S10. Energy diagram of 3CzAnBzt and *p*CzAnBzt.
- 15. Fig. S11The EL spectrum with different applied bias of 3CzAnBzt and pCzAnBzt.
- 16. Fig. S12. J-V characteristics of hole-only and electron-only of 3CzAnBzt and *p*CzAnBzt.

- 17. Fig. S13. EQE as a function of brightness of doped devices for 3CzAnBzt and *p*CzAnBzt.
- **18.** Table S4. The doped EL performances of **3**CzAnBzt and *p*CzAnBzt.

1.Solvatochromic effect

Lippert–Mataga equation:

$$hc(\vartheta_a - \vartheta_f) = hc(\vartheta_a^{\circ} - \vartheta_f^{\circ}) - \frac{2(\mu_e - \mu_g)^2}{a^3} f(\varepsilon, n)$$
 Equation 1

 $f(\varepsilon,n)$: the orientational polarizability of solvents.

 ε : the solvent dielectric.

n: the solvent refractive index.

 $\mu_{\rm e}$: the excited state dipole moment.

 μ_{g} : the ground state dipole moment.

a: the solvent cavity (Onsager) radius

$$f(\varepsilon, n) = \frac{\varepsilon - 1}{2\varepsilon + 1} - \frac{n^2 - 1}{2n^2 + 1}; a = (3M/4N\pi d)^{1/3}$$
 Equation 2

N: avogadro number.

M: molecular weight.

d: density ($d = 1.0 \text{ g cm}^{-3}$).

Fig. S1. (a) Thermogravimetric analysis (TGA) and (b) Differential scanning calorimetry (DSC) curves of **3CzAnBzt** and *p*CzAnBzt.

Compound	$CE_{max/1000}^{a} (cd A^{-1})$	$EQE_{max/1000}^{a}$ (%)	$\lambda_{EL} (nm)$	$\operatorname{CIE}(\mathbf{x},\mathbf{y})$	Ref.
3CzAnBzt	11.72/10.17	10.06/8.97	463	(0.14, 0.14)	This work
pCzAnBzt	8.22/6.07	9.23/7.10	454	(0.14, 0.10)	This work
PIAnCN	13.16/-	9.44/9.44	470	(0.14, 0.19)	47
DMAC-DPS	-	19.5/14.6	480	(0.16, 0.29)	30
Blu2	3.34	7.40/-	493	(0.15, 0.29)	12
PPI-2TPA	4.4/-	7.20/6.30	440	(0.15, 0.06)	45
TPA-PA	4.07/-	7.23/-	428	(0.16, 0.07)	14
TAT	3.64/-	7.18/-	444	(0.16, 0.09)	9
N1-1-PhTPA	6.35/5.70	6.08/5.46	458	(0.14, 0.12)	38
BBTPI	5.48	5.77/5.41	448	(0.15, 0.10)	15
TPAXAN	-	4.62/-	428	(0.16, 0.05)	16

 Table S1. Nondoped electroluminescent performances for some representative blue-emitting materials.

^a CE and EQE of maximum / at 1000 cd m⁻².

Table S2. Detailed information of absorption and emission peak positions of 3CzAnBzt and pCzAnBzt indifferent solvents at an identical concentration of 10^{-5} M.

				3CzAnBzt		pCzAnBzt			
Solvent	ε	n	Δf	λ_a	λ_{f}	v_{a} - v_{f}	λ_a	λ_{f}	v_{a} - v_{f}
				(nm)	(nm)	(cm ⁻¹)	(nm)	(nm)	(cm ⁻¹)
<i>n</i> -Hexane	1.58	1.381	0.001	394	434	2339.2	393	426	1971.1
Touene	2.38	1.494	0.014	398	442	2501.2	396	434	2211.1
Dioxane	2.21	1.422	0.021	396	442	2628.1	395	433	2221.8
Triethylamine	2.42	1.401	0.048	394	438	2549.7	393	428	2080.8
Choloroform	4.81	1.443	0.149	397	449	2917.2	396	438	2421.5
Ethyl ether	4.34	1.352	0.167	394	446	2959.2	392	436	2574.4
Ethyl aceyate	6.02	1.372	0.200	394	446	2959.2	393	433	2350.6
Tetrahydrofuran	7.58	1.407	0.210	397	448	2867.5	395	436	2380.7
Methylene chloride	8.93	1.424	0.217	398	454	3099.2	396	438	2421.5

Dimethyl formamide	37.0	1.427	0.276	398	464	3573.9	396	442	2628.1
Acetone	20.7	1.359	0.284	394	452	3256.8	393	437	2562.0

Fig. S2. The absorption (UV) spectra of AnBzt in dichloromethane (10^{-5} M).

Fig. S3. Schematic molecular conformations and interactions of 3CzAnBzt in the crystal.

Fig. S4. Schematic molecular conformations and interactions of *p*CzAnBzt in the crystal.

Fig. S5. The emission of 3CzAnBzt (a) and *p*CzAnBzt (b) in different solvents.

Table S3 Crystal data and structure refinement for 3CzAnBzt and pCzAnBzt.

Identification code	3CzAnBzt	pCzAnBzt
Empirical formula	$C_{39}H_{24}N_2$	$C_{39}H_{24}N_2$
Formula weight	520.64	520.64
Temperature	100 K	100 K
Crystal system, space group	Monoclinic, P-1	Triclinic, P-1

a, Å	33.7852(9)	7.4203(2)
b, Å	9.1188(2)	13.3663(3)
c, Å	8.6590(3)	14.5908(4)
Alpha, deg	90	96.694(2)
Beta, deg	95.866(3)	97.320(2)
Gamma, deg	90	98.178(2)
Volume	2653.70(13) Å ³	1407.32(6) Å ³
Calculated density	1.303 g/cm ³	1.229 g/cm ³
F(000)	1088	544
CCDC number	1857041	1857042

Fig. S6. Linear correlation of orientation polarization (Δf) of solvent media with the Stokes shift ($v_a - v_f$) for **3CzAnBzt** (a) and *p***CzAnBzt** (b).

Fig. S7. Cyclic voltammetric scans of 3CzAnBzt and *p*CzAnBzt.

Fig. S8. NTOs of singlet and triplet excited states for 3CzAnBzt.

Fig. S9. NTOs of singlet and triplet excited states for *p*CzAnBzt.

Fig. S10. Energy diagram of calculated singlet and triplet excited states for 3CzAnBzt (a) and *p*CzAnBzt (b).

Fig. S11. The EL spectrum with different applied bias of 3CzAnBzt (a) and pCzAnBzt (b).

Fig. S12. *J-V* characteristics of hole-only and electron-only of **3CzAnBzt** and *p***CzAnBzt**. The devices structure of hole-only: ITO/HATCN (15 nm)/TAPC (50 nm)/TCTA (5 nm)/EML (20 nm) /TCTA (5 nm)//TAPC (50 nm) /HATCN (15 nm) /Al(150 nm), and the devices structure of electron-only: ITO/LiF(1 nm)/TmPyPB (40 nm)/EML (20)/TmPyPB (40 nm)/ LiF(1 nm)/Al(150 nm).

Fig. S13. EQE as a function of brightness of doped devices for 3CzAnBzt (a) and pCzAnBzt (b).

Table S4. Summary of the doped	EL performances of OLEDs based on 3CzAnBzt and	pCzAnBzt.
--------------------------------	---	-----------

device ^a	$V_{on}^{\ b}$	L_{max}^{c} (cd	CE_{max}^{d}	PE _{max} ^e	$EQE_{\text{max}}{}^{f}$	$\lambda_{EL}{}^g$	CIE ^h (x, y)
	(V)	m ⁻²)	$(cd A^{-1})$	$(lm W^{-1})$	(%)	(nm)	
CBP/3% 3CzAnBzt	3.4	3049	4.92	4.54	5.95	452	(0.15, 0.08)
CBP/10% 3CzAnBzt	3.2	3507	5.77	5.66	6.25	454	(0.14, 0.09)
CBP/15% 3CzAnBzt	3.0	8298	6.67	6.98	6.27	458	(0.14, 0.12)
CBP/40% 3CzAnBzt	3.0	9918	6.94	7.14	6.39	457	(0.14, 0.13)
CBP/3% <i>p</i> CzAnBzt	3.6	1599	2.70	2.36	4.58	450	(0.15, 0.06)
CBP/10% <i>p</i> CzAnBzt	3.4	1659	3.01	2.58	4.39	452	(0.15, 0.07)
CBP/15% <i>p</i> CzAnBzt	3.2	3318	4.37	4.04	5.24	453	(0.14, 0.08)
CBP/40% <i>p</i> CzAnBzt	3.2	4168	5.62	5.41	6.43	453	(0.14, 0.09)

^a The uniform device structure: ITO/HAT-CN (15 nm)/TAPC (50 nm)/TCTA (5 nm)/CBP:3%**3CzAnBzt** or **CBP:3%pCzAnBzt** (20 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (150 nm). ^b Voltage at 1 cd m⁻². ^c Maximum luminance. ^d Maximum current efficiency. ^e Maximum power efficiency. ^f Maximum external quantum efficiency. ^g EL emission peak at 6 V. ^h Commission Internationale de l'Éclairage coordinates at 6 V.