Supplementary Information

Photoinduced effects on the magnetic properties of the $(Fe_{0.2}Cr_{0.8})_{1.5}[Cr(CN)_6]$ Prussian blue analogue.[†]

Francisco Jesús Luque,^{*a*} Iwona Agnieszka Kowalik,^{*b*} Juan Pablo Prieto-Ruiz,^{*c*} Miguel Ángel Niño,^{*d*} Helena Prima-García,^{*c*} Francisco Manuel Romero,^{*c*} Dimitri Arvanitis,^{*e*} Corine Mathonière,^{*f*,*g*} Eugenio Coronado,^{*c*} Rodolfo Miranda,^{*a*,*d*,*h*} and Juan José de Miguel^{**a*,*h*,*i*}

Sample preparation

The $(Fe_{0.2}Cr_{0.8})_{1.5}[Cr(CN)_6]\cdot 15 H_2O$ Prussian blue analogue (PBA) films used in this work were fabricated by electrodeposition onto $5 \times 10 \text{ mm}^2$ Mylar substrates covered by an evaporated, 100 nm-thick Au film. The electrochemical cell was charged with a 20 mL aqueous solution containing $K_3[Cr(CN)_6]$ (5 mM), $CrCl_3$ (6.7 mM) and FeCl_3 (1.1 mM) as reported in the literature.^{1,2} The chemicals were purchased from Sigma-Aldrich and used without further purification. The deposition was carried out at a fixed potential of -0.8 V. A commercial Ag/AgCl (3M NaCl) reference electrode and a Pt counter electrode were also employed. The deposition process was controlled by a Metrohm AUTOLAB potentiostat operating in coulometry mode. After growth the films were rinsed with mili-Q water and dried at room temperature. Since the thickness of electrodeposited $Cr_{5.5}(CN)_{12}\cdot 11.5 H_2O$ films was found to increase linearly with deposition time in a previous study,³ this parameter has been used to control the thicknesses of the samples prepared for this work. The thin films used for the XAS measurements were obtained using a short electrodeposition pulse of 5 seconds; the thicker EXAFS samples required 100 seconds of deposition. The films' thicknesses were cross-checked after growth by means of an Ambios Technology XP-1 profilometer. Further compositional and morphological characterisation has been presented in our previous publication.⁴

Fig. S.1 Schematic representation of the model with 3 metal centres proposed in the text and the charge transfer process from Fe^{II} to Cr^{III}_{ox} across the bridging Cr^{III}.

^a Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049-Madrid, Spain.

^b Institute of Physics, Polish Academy of Sciences, 02668-Warsaw, Poland.

^c Instituto de Ciencia Molecular (ICMol), Universitat de València, 46980-Paterna, Spain.

^d IMDEA-Nanoscience, Cantoblanco, 28049 Madrid, Spain.

^e Department of Physics and Astronomy, Uppsala University, 75237-Uppsala, Sweden.

^f CNRS, ICMCB, UPR 9048, F-33800 Pessac, France.

^g Univ. Bordeaux, ICMCB, UPR 9048, F-33700 Pessac, France.

^h Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.

ⁱ Instituto de Física de Materiales "Nicolás Cabrera", Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain. E-mail: juanjose.demiguel@uam.es

Ligand Field parameters

The whole sets of parameters used to analyse the XAS spectra discussed in the manuscript are listed in the following tables. The fits to the data have been carried out with the CTM4XAS package, ^{6,7} which is based on the TT-Multiplet code of Thole and Ogasawara.^{8,9} For those not familiar with this software, the physical meaning of these parameters can be briefly described as follows:

- Atomic multiplet parameters:
 - κ , the Slater-Condon parameter or percentage of reduction of the Slater integrals. Measures the covalency of the interaction between the metal and the ligand, with low values of κ corresponding to covalent bonds.
 - ζ_{2p} , the magnitude of the spin-orbit coupling (SOC) for the 2p orbitals. This parameter controls the energy separation between the L_2 and L_3 edges.
 - ζ_{3d} , SOC for the 3*d* orbitals. Although weak (of the order of 10^{-2} eV), it can have significant effects because it controls whether Hund's third rule is applicable or not in the ground state.
- *Crystal field parameters:* The crystal field splitting 10Dq represents the splitting between the e_g and t_{2g} subbands in octahedral symmetry. When the symmetry is reduced, these levels can be split further, with energy separations controlled by the parameters D_t and D_s .
- *Charge transfer parameters:* The hybridization between the metal centre and the surrounding ligands is accounted for by considering the interaction between two or more electronic configurations.
 - *EG* (*EF*) gives the difference in energy of both configurations in the ground (excited) state.
 - In octahedral symmetry, the hopping integrals T_{e_g} and $T_{t_{2g}}$ control the mixing of the electronic states of the different configurations, giving rise to the formation of σ or π -type bonds, respectively.
 - If the symmetry is reduced the hopping integrals are denoted T_{b_1} , T_{a_1} , T_{b_2} , and T_e .

		300 K	300 K	150 K	150 K
			green light		green light
	κ (%)	100	100	100	100
	ζ_{2p} (eV)	7.79	7.79	7.79	7.79
	ζ_{3d} (eV)	0.000	0.000	0.000	0.000
	10 <i>Dq</i> (eV)	0.8	0.7	0.9	0.8
	D_t (eV)	0.040	0.040	0.025	0.050
	D_s (eV)	0.070	-0.030	0.012	0.050
	EG2	0.0	0.0	0.0	0.0
	EF2	0.0	0.0	0.0	0.0
IMCT	T_{b_1}	0.0	0.0	0.0	0.0
LIVICI	T_{a_1}	0.0	0.0	0.0	0.0
	T_{b_2}	0.0	0.0	0.0	0.0
	T_e	0.0	0.0	0.0	0.0
	EG2	1.5	1.2	1.7	1.5
	EF2	0.5	0.2	0.8	0.5
МІСТ	T_{b_1}	2.8	2.9	3.1	2.8
MLC I	T_{a_1}	2.5	2.9	3.1	2.5
	T_{b_2}	3.8	3.5	3.4	3.8
	T_e	3.4	3.5	3.5	3.4
	$\%$ $ 3d^{5}L^{-}\rangle$	48	48	47	48
Configuration	$\% 3d^6\rangle$	52	52	53	52
	% $ 3d^7\underline{L}\rangle$	0	0	0	0
# holes		4.48	4.48	4.47	4.48

Table S.I Set of Ligand Field parameters for Fe^{II} HS used with the CTM4XAS⁷ software package to fit the experimental XAS spectra.

Table S.II Set of Ligand Field parameters for ${\sf Fe}^{\rm II}$ LS.

		300 K	300 K	150 K	150 K
			green light		green light
	к (%)	50	_	50	50
	ζ_{2p} (eV)	8.20	—	8.20	8.20
	ζ_{3d} (eV)	0.067	_	0.067	0.067
	10Dq (eV)	2.3	_	2.5	2.2
	D_t (eV)	0.000	—	0.000	0.000
	D_s (eV)	0.000	—	0.000	0.000
	EG2	3.0	_	2.3	3.5
	EF2	2.0	—	1.3	2.5
IMOT	T_{b_1}	1.1	_	1.1	1.1
	T_{a_1}	1.1	_	1.1	1.1
	T_{b_2}	1.8	_	1.8	1.8
	T_e	1.8		1.8	1.8
	EG2	0.0	_	0.0	0.0
	EF2	0.0	—	0.0	0.0
MICT	T_{b_1}	0.0	—	0.0	0.0
IVILC I	T_{a_1}	0.0	—	0.0	0.0
	T_{b_2}	0.0	—	0.0	0.0
	T_e	0.0		0.0	0.0
	$\% 3d^5 \mathrm{L}^- angle$	30	_	33	28
Configuration	$\% 3d^6 angle$	70	—	67	72
	$\% 3d^{7}\underline{L}\rangle$	0	_	0	0
# holes		4.30	_	4.33	4.28

Table S.III Ligand Field parameters for $\mbox{Fe}^{\rm III}.$

		300 K	300 K	150 K	150 K
			green light		green light
	к (%)	80	80	80	80
	ζ_{2p} (eV)	7.79	7.79	7.79	7.79
	ζ_{3d} (eV)	0.064	0.064	0.064	0.064
	10Dq (eV)	1.1	1.1	1.3	1.2
	D_t (eV)	0.000	0.000	0.000	0.000
	D_s (eV)	0.000	0.000	0.000	0.000
	EG2	0.9	0.5	0.5	0.5
	EF2	0.0	0.0	0.0	0.0
IMOT	T_{b_1}	0.8	0.8	0.8	0.8
LIVICI	T_{a_1}	0.8	0.8	0.8	0.8
	T_{b_2}	1.0	1.0	1.0	1.0
	T_e	1.0	1.0	1.0	1.0
	EG3	0.9	1.7	0.9	0.8
	EF3	2.5	3.2	2.5	2.4
MICT	T_{b_1}	1.7	1.7	1.6	1.7
IVILC I	T_{a_1}	1.7	1.7	1.6	1.7
	T_{b_2}	0.6	0.6	0.7	0.7
	T_e	0.6	0.6	0.7	0.7
	% $ 3d^4\mathrm{L}^- angle$	29	22	25	28
Configuration	$\% 3d^5\rangle$	56	62	60	59
	% $ 3d^{6}\underline{\mathrm{L}}\rangle$	15	16	15	13
# holes		5.15	5.07	5.10	5.14

Table S.IV Ligand Field parameters for $Cr^{\rm II}$ HS.

		300 K	300 K	150 K	150 K
			green light		green light
	κ (%)	80	80	80	80
	ζ_{2p} (eV)	5.78	5.78	5.78	5.78
	ζ_{3d} (eV)	0.042	0.042	0.042	0.042
	10Dq (eV)	0.7	0.7	1.1	0.8
	D_t (eV)	0.020	0.020	0.100	0.040
	D_s (eV)	-0.140	-0.140	-0.050	-0.140
	EG3	6.0	5.5	2.5	5.5
	EF3	6.5	6.5	3.0	6.5
IMOT	T_{b_1}	1.4	1.4	1.2	1.6
LIVICI	T_{a_1}	1.4	1.4	1.2	1.6
	T_{b_2}	0.7	0.7	0.6	0.8
	T_e	0.7	0.7	0.6	0.8
	EG2	-0.6	-1.1	-2.1	-0.5
	EF2	-2.6	-3.0	-4.1	-2.5
MICT	T_{b_1}	1.6	1.5	1.1	1.1
IVILC I	T_{a_1}	1.6	1.5	1.9	1.5
	T_{b_2}	0.4	0.4	0.5	0.4
	T_e	0.4	0.4	0.5	0.4
	$\%$ $ 3d^{3}L^{-}\rangle$	24	18	17	21
Configuration	$\% 3d^4 angle$	70	75	75	70
	% $ 3d^{5}\underline{L}\rangle$	6	7	8	9
# holes		6.18	6.12	6.08	6.13

Table S.V Ligand Field parameters for $\mathsf{Cr}^{\mathrm{III}}.$

		300 K	300 K	150 K	150 K
			green light		green light
	κ (%)	70	70	80	70
	ζ_{2p} (eV)	5.78	5.78	5.78	5.78
	ζ_{3d} (eV)	0.000	0.000	0.000	0.048
	10Dq (eV)	2.7	2.8	2.4	2.6
	D_t (eV)	-0.020	-0.020	-0.060	-0.040
	D_s (eV)	0.120	0.140	0.120	0.100
	EG2	-4.2	-4.2	-4.3	-4.2
	EF2	-6.0	-6.0	-6.0	-6.0
	T_{b_1}	0.5	0.5	0.5	0.5
LIVICI	T_{a_1}	0.5	0.5	0.5	0.5
	T_{b_2}	0.2	0.2	0.2	0.2
	T_e	0.2	0.2	0.2	0.2
	EG3	-2.5	-2.5	-2.5	-2.5
	EF3	-1.5	-1.5	-1.5	-1.5
МІСТ	T_{b_1}	0.6	0.7	1.1	0.6
WILC I	T_{a_1}	0.6	0.8	1.0	0.7
	T_{b_2}	1.3	1.1	1.8	1.3
	T_e	0.9	0.8	1.6	0.8
	% $ 3d^2L^-\rangle$	15	12	22	14
Configuration	% $ 3d^3\rangle$	83	86	76	84
	$\% 3d^4 \underline{L}\rangle$	2	2	2	2
# holes		7.13	7.10	7.20	7.12

Table S.VI Ligand Field parameters for $Cr^{\rm III}$ WCF.

		300 K	300 K	150 K	150 K
			green light		green light
	κ (%)	90	_	90	90
	ζ_{2p} (eV)	5.67	_	5.67	5.67
	ζ_{3d} (eV)	0.047	_	0.047	0.047
	10Dq (eV)	1.2	—	1.2	1.2
	D_t (eV)	0.050	_	0.050	0.050
	D_s (eV)	0.020	—	0.020	0.020
	EG2	-0.7	_	-0.7	-0.7
	EF2	-2.1	—	-2.1	-2.1
	T_{b_1}	1.5	_	1.5	1.5
LIVICI	T_{a_1}	1.5	_	1.5	1.5
	T_{b_2}	0.2	_	0.2	0.2
	T_e	0.2	—	0.2	0.2
	EG3	-1.0	_	-1.0	-1.0
	EF3	0.0	—	0.0	0.0
MICT	T_{b_1}	0.6	_	0.6	0.6
IVILC I	T_{a_1}	0.6	_	0.6	0.6
	T_{b_2}	1.4	_	1.4	1.4
	T_e	1.4	—	1.4	1.4
	% $ 3d^2L^- angle$	12	_	12	12
Configuration	% $ 3d^3\rangle$	57	_	57	57
	% $ 3d^{4}\underline{L}\rangle$	31	—	31	31
# holes		6.82		6.82	6.82

Table S.VII Ligand Field parameters for $\mbox{Cr}^{\rm IV}.$

		300 K	300 K	150 K	150 K
			green light		green light
	κ (%)	90	90	90	90
	ζ_{2p} (eV)	5.67	5.67	5.67	5.67
	ζ_{3d} (eV)	0.047	0.47	0.047	0.047
	10Dq (eV)	1.1	1.1	1.3	1.1
	D_t (eV)	0.020	0.020	0.150	0.020
	D_s (eV)	-0.020	-0.020	-0.200	-0.015
	EG2	4.0	4.0	4.5	4.0
	EF2	3.0	3.0	3.5	3.0
IMCT	T_{b_1}	0.0	0.0	0.0	0.0
LIVICI	T_{a_1}	0.5	0.5	0.8	0.5
	T_{b_2}	1.7	1.7	2.0	1.7
	T_e	1.3	1.3	1.0	1.3
	EG3	0.0	0.0	0.0	0.0
	EF3	0.0	0.0	0.0	0.0
MICT	T_{b_1}	0.0	0.0	0.0	0.0
IVILC I	T_{a_1}	0.0	0.0	0.0	0.0
	T_{b_2}	0.0	0.0	0.0	0.0
	T_e	0.0	0.0	0.0	0.0
	$\%$ $ 3d^{1}L^{-}\rangle$	0	0	0	0
Configuration	% $ 3d^2 angle$	74	74	81	74
	% $ 3d^3\underline{L}\rangle$	26	26	19	26
# holes		7.74	7.74	7.81	7.74

EXAFS analysis

Table S.VIII summarizes the interatomic distances and unit cell sizes determined from our analysis of the EXAFS measurements.

Shell	d _N (Å)	d _C (Å)	Unit cell size (Å)
Fe ^{II} HS−N≡C−Cr ^{III}	$d(Fe^{II}-N) = 2.12\pm0.01$	$d(Cr^{III}-C) = 2.05\pm0.01$	$10.72{\pm}0.03$
Fe ^{II} LS−C≡N−Cr ^{III} WCF	$d(Cr^{III}-N) = 2.13\pm0.03$	$d(Fe^{II}-C) = 2.03\pm0.04$	$10.65 {\pm} 0.03$
$Fe^{III}-N\equiv C-Cr^{III}$	$d(Fe^{III}-N) = 2.08\pm0.04$	$d(Cr^{III}-C) = 2.04\pm0.01$	$10.51 {\pm} 0.01$
$Cr^{II}-N\equiv C-Cr^{III}$	$d(Cr^{II}-N) = 2.11\pm0.01$	$d(Cr^{III}-C) = 2.01\pm0.01$	$10.55 {\pm} 0.01$
$Cr^{III}-N\equiv C-Cr^{III}$	$d(Cr^{III}-N) = 2.04\pm0.02$	$d(Cr^{III}-C) = 2.01\pm0.02$	$10.55{\pm}0.02$

Table S.VIII Summary of interatomic distances and unit cell sizes derived from the analysis of the EXAFS measurementsat 295 K.

The following tables, S.IX and S.X list the main parameters resulting from the fits to the EXAFS data of Fe and Cr respectively by the Athena and Artemis programmes.^{10,11} In brief, the physical meaning of these parameters is the following:

- S₀² is a dimensionless factor applied to the EXAFS amplitude to account for many body effects, such as those due to multiple electron excitations.
- E_0 is the threshold energy; it is closely related to the edge energy, but it can be modified during the fitting procedure by an amount ΔE .
- Δr is the change with respect to the initial half-path length, caused by the potential-dependent phase shifts.
- The Debye-Waller factor takes into account the effects of thermal and structural disorder, and is measured in terms of the mean square relative displacements of the neighbouring atoms involved in the scattering process.

Shell	Path	$S_0^2(k)$	ΔE (eV)	Δr (Å)	Debye-Waller (Å ²)
	Fe–N	0.73	7.90	-0.0275	0.01185
	Fe–C	1.100225	6.56	-0.039	0.021
$[1]$ Fe -N \equiv C-Cr	Fe-(N-C)	0.55	5.66	0.0	0.017
	Fe–Cr	1.03729	-2.797531	0.06	0.011093
	Fe–C	1.19	-10.0	0.08	0.0007
	Fe–N	0.95372	-10.0	0.039545	0.0028
[2] Fe −C≡N−Cr	Fe-(C-N)	0.90	10.0	0.0	0.00497
	Fe–Cr	1.199887	-9.999987	-0.077298	0.001
	Fe–N	0.90	10.0	-0.07	0.0045
[3] $Fe^{III}-N\equiv C-Cr^{III}$	Fe–C	0.90	-1.28	-0.139	0.01027
	Fe-(N-C)	1.0	10.0	0.0	0.0052
	Fe–Cr	1.199741	-0.35046	-0.046	0.004866

Table S.IX Fitting parameters for the EXAFS measurements on Fe (Figure 3 in the paper).

Shell	Path	$S_0^2(k)$	ΔE (eV)	Δr (Å)	Debye-Waller (Å ²)
	Cr–C	1.1	2.278966	0	0.00308
[1] Cr^{III} - C \equiv N-F e^{II}	Cr–N	1.18199864	9.996927	0	0.000406
	Cr-(C-N)	1.199714	9.997517	0	0.012396
	Cr–Fe	1.199633	-9.993602	0	0.000121
	Cr–C	1.1904161	-8.201773	0	0.00203169
[2] CrIII N-C Fall	Cr–N	1.000846869	-0.758431	0	0.006439
[2] CI -N = C - re	Cr–(N–C)	0.9199735	6.040356	0	0.007126
	Cr–Fe	1.199791	-7.97025	0	0.001079
	Cr–C	0.7053962	10	0	0.0056
[2] CrIII C-N Fall	Cr–N	1.18984	0	0	0.005162
	Cr–(C–N)	1.1992016	0.552939	0	0.017
	Cr–Cr	1.00697	9.885946	0	0.004137
	Cr–C	0.85	6.389788	0	0.002831
[4] CrIII C-N CrIII	Cr–N	1.19	6.327053	0.039142	0.0020439
[4] CI = C = N = CI	Cr–(C–N)	1.18	-4.833741	0	0.007227
	Cr–Cr	1.15	-9.989881	-0.024962	0.002093
	Cr–C	1.05	10	0	0.004821
	Cr–N	1.05	4.781527	0	0.009339
	Cr–(N–C)	1.19	-1.162468	0	0.00627797
	Cr–Cr	1.15	-8.087871	0	0.0018053
	Cr–C	0.856501	10	0	0.002885
[6] Cr ^{II} N-C Cr ^{III}	Cr–N	1.140056	8.385928	0	0.029949
[0] CI -N = C - CI	Cr–(N–C)	1.199842	9.331722	0	0.009274
	Cr–Cr	1.193243	-9.938339	0	0.0020185
	Cr–C	0.91093	-4.106673	0.005846	0.003193
	Cr–N	0.958863	9.996942	-0.031325	0.003707
$[/] U_{1} - U = N - U_{1}$	Cr-(C-N)	1.00967	9.999086	0	0.01525
	Cr–Cr	1.195103	-10	-0.02671	0.00203

Table S.X Fitting parameters for the EXAFS measurements on Cr (Figure 6 in the paper).

Notes and references

- 1 S.-I. Ohkoshi, A. Fujishima and K. Hashimoto, J. Am. Chem. Soc., 1998, 120, 5349-5350.
- 2 T. Nuida, T. Hozumi, W. Kosaka, S. Sakurai, S. Ikeda, T. Matsuda, H. Tokoro, K. Hashimoto and S.-I. Ohkoshi, *Polyhedron*, 2005, **24**, 2901–2905.
- 3 E. Coronado, M. Makarewicz, J. P. Prieto-Ruiz, H. Prima-García and F. M. Romero, *Adv. Mater.*, 2011, 23, 4323–4326.
- 4 F. J. Luque, I. A. Kowalik, J. P. Prieto-Ruiz, M. A. Niño, H. Prima-García, F. M. Romero, D. Arvanitis, E. Coronado, R. Miranda and J. J. de Miguel, *J. Mater. Chem. C*, 2018, **6**, 8171–8186.
- 5 E. Coronado, M. Fitta, J. P. Prieto-Ruiz, H. Prima-García, F. M. Romero and A. Cros, J. Mater. Chem. C, 2013, 1, 6981–6985.
- 6 E. Stavitski and F. M. F. de Groot, Micron, 2010, 41, 687-694.
- 7 http://www.anorg.chem.uu.nl/CTM4XAS/index.html.
- 8 H. Ogasawara, A. Kotani, K. Okada and B. T. Thole, Phys. Rev. B, 1991, 43, 854-859.
- 9 H. Ogasawara, A. Kotani, R. Potze, G. A. Sawatzky and B. T. Thole, Phys. Rev. B, 1991, 44, 5465–5469.
- 10 B. Ravel and M. Newville, J. Synchrotron Rad., 2005, 12, 537-541.
- 11 http://cars9.uchicago.edu/ifeffit/BruceRavel/Horae.