Electronic Supplementary Information

An efficient PEDOT-coated textile for wearable thermoelectric

generators and strain sensors

Yanhua Jia,^a Lanlan Shen,^a Jing Liu,^a Weiqiang Zhou,^a Yukou Du,^b Jingkun Xu,^{*a,b}

Congcong Liu,^a Ge Zhang,^a Zishan Zhang,^a Fengxing Jiang^{*a}

^a Department of Physics, Jiangxi Science and Technology Normal University, Nanchang

330013, P. R. China

^b College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

^c College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, P. R. China

*The corresponding authors, email: xujingkun@tsinghua.org.cn (J. Xu), and f.x.jiang@live.cn (F. Jiang)

Preparation of n-type CNTs paper

The p-type carbon nanotubes (CNTs) paper was obtained from Nanjing Xianfeng Nano Co. The n-type CNT paper doping was based on a previously published procedure that 5 vol. % polyethyleneimine (PEI) and NaBH₄ (0.378 g) were added to the deionized water (10 mL), and then the n-type CNTs paper was placed on mixture solution for 48 h. Finally, the sample washed with DI water and dried in air at 50 °C.¹

Different Strain

Fig. S1. SEM images of the MT@PEDOT with (d) 0%, (e) 30%, and (f) 50 % strain.

Raman Spectra

Fig. S2. Raman of PEDOT-coated electronic textiles.

Resistance dependence on deposition times of VPP-PEDOT textile

Fig. S3. Fitted curve of number of deposition cycle: (a) CO@PEDOT, (b) CT@PEDOT, and (c) MT@PEDOT.

Resistance and GF dependence on strain of MT@PEDOT

Fig. S4. Strain-dependent (a) resistance and (b) GF of MT@PEDOT strain sensors with different pre-stretch.

The doping level change Of PEDOT coating with heat treatment

Fig.S5 The sheet resistance (a) and UV–Vis–NIR spectra (b) of PEDOT coating on glass substrate with different heat treatment temperature.

MT@PEDOT with heat treatment

Fig. S6 SEM images of the MT@PEDOT with different heat treatment temperature: (a). 25 °C, (b) 60 °C, (c) 100 °C, (d) 180 °C.

The change of resistance at low temperature

Fig.S7 The sheet resistance of MT@PEDOT with different temperature.

Fig. S8. Strain-dependent Gauge factor (GF) of MT@PEDOT strain sensors with

different number of deposition cycles;

Resistance dependence on strain of MT@PEDOT

Fig. S9. The linear regression equation of MT@PEDOT of strain dependent resistance with strain (a) 0.5-5 % and (b) 10-30 %.

Resistance dependence on stretch times

Fig. S10. Cyclic stretch/release test data of MT@PEDOT with different time: (a) 440-460 min and (b) 900-920 min.

Microstructure change

Fig. S11. SEM images of the MT@PEDOT after 500 cyclic loading.

Notes and references

1 C. Yu, A. Murali, K. Choi, Y. Ryu, *Energy Environ. Sci.*, 2012, **5**, 9481-9486.