Lanthanide cation encapsulated in a metal-organic framework as a white LED and selective naked-eye reversible HCl sensor

Huijun Li, Qingqing Li, Zhouqing Xu*

College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China, *Email - <u>zhqxu@hpu.edu.cn</u>.

Complex	HPU-14
Formula	$C_{39}H_{50}N_2O_{26}Zn_3$
formula weight, fw	1158.92
Temperature, T [K]	296(2)
crystal system	Orthorhombic
space group	Pbca
a [Å]	16.274(5)
b [Å]	10.787(3)
c [Å]	24.384(8)
α [°]	90
β [°]	90
γ [°]	90
V [Å ³]	4281(2)
Z	4
ρ [g cm ⁻³]	1.798
μ [mm ⁻¹]	1.770
θ range	1.67-28.48
F(000)	2384
goodness-of-fit, GOF	1.002
R_1^a [I > 2 σ (I)]	0.0432
wR_2^b (all data)	0.0831
^a R ₁ = $ F_{o} - F_{c} / F_{o} $. ^b wR_{2}	$= [w(F_0^2 - F_c^2)^2 / w F_0^2 ^2]^{1/2}.$

Table S1 Crystal data and structure refinement details of HPU-14^a.

Figure S1 The IR spectra of HPU-14, HPU-14@Tb³⁺, HPU-14@Eu³⁺, and HPU-14@Tb³⁺@Eu³⁺.

Figure S2 a: The emission spectra of HPU-14@Tb³⁺@Eu³⁺ exposed to HCl gas with different concentrations; b: The plots of $I_{545/431}$ vs. C_{HCl} with fitted curves in the range of 1-4 ppm.

Figure S3 The emission spectra of HPU-14@Tb³⁺@Eu³⁺ in HCl (g) and HCl-treated HPU-14@Tb³⁺@Eu³⁺ in Et₃N (g).

Figure S4 PXRD patterns of HPU-14@Tb³⁺@Eu³⁺ (1), HPU-14@Tb³⁺@Eu³⁺ in HCl (2) and HCl-treated HPU-14@Tb³⁺@Eu³⁺ in Et₃N (3).

Figure S5 The luminescence image of **HPU-14@Tb³⁺@Eu³⁺** toward other common volatile toxic gaseous analogues. 1 HPU-14@Tb³⁺@Eu³⁺, 2 DMF, 3 DMA, 4 ethyl acetate, 5 trichloromethane, 6 acetonitrile, 7 ethanol, 8 methanol, 9 acetone, 10 styrene, 11 methylbenzene, 12 n-hexane.

Table S2 Luminescence lifetimes (µs) =	l quantum yields of HPU-14@Tb ³⁺ @Eu ^{3+a}
---	--

	$\tau_1^{(\mu s)}$	$\tau_2^{(\mu s)}$	τ ₃ (μs)	$\tau_4^{(\mu s)}$	<τ	Φ
					>(
					ms)	
HPU-14@Tb@	5.27(1.87%)	46.84(2.98%)	308.33(26.27%)	797.55(68.87%)	0.7	7.1
Eu					33	

 $^{a}<\!\!\tau\!\!>=\Sigma A_{i}\tau_{1}{}^{2}\!/\:A_{i}\tau_{1}$

Table S3 The lifetime and quantum yield of other similar MOF-based materials.

	Quantum yield (%)	Lifetime (µs)
$[Zn(\mu-L)(\mu-1,3-dpp)]^1$	2.8	876
Mg-CP⊃CuI ²	5.6	-
SMOF-1 ³	4.3	600
ZJU-1:1.5% Tb ³⁺ , 2.0% Eu ³⁺⁴	6.8	
10% Eu-SMOF-1 ⁵	4.3	-

1 W. Huang, F. F. Pan, Y. Liu, S. D. Huang, Y. J. Li, J. Yong, Y. Li, A. M. Kirillov, and D. Y. Wu, Inorg. Chem. 2017, 56, 6362-6370

2 Z. F. Wu, B. Tan, Z. L. Xie, J. J. Fu, X. Y. Huang, J. Mater. Chem. C. 2016, 4, 2438.

3 D. F. Sava, L. E. S. Rohwer, M. A. Rodriguez, T. M. Nenoff, J. Am. Chem. Soc. 2012, 134, 3983.

4 X. Rao, Q. Huang, X. Yang, Y. Cui, Y. Yang, C. Wu, B. Chen, G. Qian, J. Mater. Chem. 2012, 22, 3210.

5 Wang, Z.; Wang, Z.; Lin, B.; Hu, X.; Wei, Y.; Zhang, C.; An, B.; Wang, C.; Lin, W. ACS Appl. Mater. Interfaces. 2017, 9, 35253-35259.