Supporting Information

Penta- $MX_2(M = Ni, Pd and Pt, X = P and As)$ monolayers: direct band-gap semiconductors with high carrier mobility

Shifeng Qian¹, Xiaowei Sheng¹,* Xian Xu¹, Yuxiang Wu¹, Ning Lu¹, Zhengbo

Qin¹, Jian Wang², Caixia Zhang³, Eryin Feng¹, Wuying Huang¹, and Yong Zhou¹

 Department of Physics, Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Anhui Normal University, Anhui, Wuhu 241000, China

2. School of Science, Huzhou University, Zhejiang 10083, China

3. College of Physics and Information Engineering,

Fuzhou University, Fuzhou, 350108, P.R.China

(Dated: January 23, 2019)

^{*}Corresponding author: xwsheng@mail.ahnu.edu.cn

FIG. S1: Structure of bulk NiP₂ and PdP₂ in space group of C2/c (a) and bulk PtP₂, NiAs₂, PdAs₂and PtAs₂ in space group of Pa $\overline{3}$ (b). Red and blue balls represented the metal and P/As atoms in a layer, respectively.

FIG. S2: (a)3D ELF of NiP₂ with isosurface value of 0.7. (b) 2D ELF of NiP₂ in (001) plane.

FIG. S3: The projected DOS of MX_2 .

FIG. S4: Snap shots of the final frame of each molecular dynamic simulation using NVT.

	C_{11}	C_{12}	C_{66}	Y
NiP_2	124.2	28.1	39.3	117.9
PdP_2	114.9	34.8	28.4	104.4
PtP_2	143.3	40.4	35.9	131.9
$NiAs_2$	103.3	27.8	29.4	96.0
PdAs_{2}	92.6	32.4	23.7	81.2
$PtAs_2$	107.4	27.6	34.8	100.3

TABLE S1: Calculated values for elastic modulus tensor C_{ij} (in Nm⁻¹) and the in-plane Young's modulus (Y) (in Nm⁻¹) of MX₂

FIG. S5: Band energy of the VBM (a) and CBM (b) of PdAs₂ with respect to the vacuum energy as a function of lattice dilation. Band structure near the VBM(c) and CBM(d) of PdAs₂. Total energy-strain curve of PdAs₂. Red solid lines are the fitting curves.