Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information for

Turn-off/on fluorescent sensors for Cu²⁺ and ATP in aqueous solution based on tetraphenylethylene derivative

Lai-Yao Geng,^a Yang Zhao,^a Edward Kamya,^a Jin-Tang Guo,^a Bin Sun,^b Ya-Kai Feng,^a Mei-Fang

Zhu,^b Xiang-Kui Ren,*,a

^a School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China

^b State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of

Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China

*Corresponding Author: renxiangkui@tju.edu.cn

Fig. S1. UV/Vis spectra of TPE-COOH in different H₂O/EtOH mixtures from 0% to 90%. [TPE-COOH] = 1.0×10^{-5} mol/L.

Fig. S2. Linear curve between maximum emission intensity of TPE-COOH and the Cu^{2+} concentration in HEPES buffer.

Fig. S3. Job's plot for determining the binding ratio of TPE-COOH to Cu^{2+} in HEPES buffer (10 mM, pH 7.4). The total concentration of TPE-COOH and Cu^{2+} ion is 20 μ M.

Δ13+	Cs2+	Sr2+	Cr3+	Fo3+	Ba2+	Ma ²⁺
	9				Ba	Wig
		*				
Ca ²⁺	Ni ²⁺	blank	Mn ²⁺	Zn ²⁺	Co ²⁺	Cu ²⁺

Fig. S4. Photos of TPE-COOH upon addition of various metal ions in HEPES buffer. [TPE-COOH] = 1.0×10^{-5} mol/L; [metal] = 2.0×10^{-5} mol/L; $\lambda_{exc} = 365$ nm.

Fig. S5. UV/Vis spectra of TPE-COOH upon introduction of different amounts of Cu^{2+} in HEPES buffer (10 mM, pH 7.4). [TPE-COOH] = 1.0×10^{-5} mol/L.

Fig. S6. Scanning electron microscope photographs of aggregates: (a) TPE-COOH; (b) TPE-COOH/ Cu^{2+} and (c) TPE-COOH/ Cu^{2+} -ATP.

Fig. S7. Job's plot for determining the binding ratio of TPE-COOH/Cu²⁺ to ATP in HEPES buffer (10 mM, pH 7.4). The total concentration of TPE-COOH/Cu²⁺ and ATP is 20 μ M.

Fig. S8. UV/Vis spectra of TPE-COOH/Cu²⁺ upon introduction of different amounts of ATP in HEPES buffer (10 mM, pH 7.4). [TPE-COOH] = 1.0×10^{-5} mol/L; [Cu²⁺] = 2.0×10^{-5} mol/L.

Fig. S9. Photos of TPE-COOH/Cu²⁺ upon addition of various ions in HEPES buffer. [TPE-COOH/Cu²⁺] = 1.0×10^{-5} mol/L; [anion] = 2.0×10^{-5} mol/L; $\lambda_{exc} = 365$ nm.