Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

for

Nanostructured metallo-supramolecular polymer based gel-type electrochromic devices with ultrafast switching time and high colouration efficiency

Susmita Roy and Chanchal Chakraborty*

Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus,

Jawahar Nagar, Shameerpet Mandal, Hyderabad-500078, India

Content

1.	Molecular weight measurements by SEC-viscometry-RALLS method	-S3
2.	Scan rate dependent cyclic voltammetry study	-S4
3.	Thickness measurement of films by cross-sectional SEM images	S 5
4.	Calculation of colouration and bleaching time	· S6
5.	Chronoamperometry study to calculate charge/discharge	- S 7

1. Molecular weight measurements by SEC-viscometry-RALLS method

Fig. S1 The SEC-viscometry-RALLS trace for molecular weight measurement of polyFe in methanol solution by at room temperature.

2. Scan rate dependent cyclic voltammetry study

Fig. S2 (a) CV of PSS-polyFe11 films on GCE with different scan rates (25-200 mV/s) in a 0.1 M tetrabutylammonium perchlorate in acetonitrile electrolyte. (b) Relation of anodic peak current in the oxidation of the Fe²⁺ ions with the square root of the scan rate in the polyFe11 film. (c) CV of PSS-polyFe21 films in above-mentioned condition, and (d) Relation of anodic peak current with the square root of the scan rate in the PSS-polyFe21 film.

3. Thickness measurement of films by cross-sectional SEM images

Fig. S3 The cross-sectional SEM images of the EC films containing (a) polyFe, (b) PSS-polyFe12 and (c) PSS-polyFe11.

4. Calculation of colouration and bleaching time

Fig. S4 The first five cycles of transmittance changes with time upon chronoamperometric potential switching between -2 V and +3 V of (a) polyFe, (b) PSS-polyFe12, and (c) PSS-polyFe11. Corresponding bleaching time (t_b) and colouration time (t_c) (the time needed for 95% change of ΔT) for the disappearance and reappearance of MLCT absorption in ECDs.

5. Chronoamperometry study to calculate charge/discharge

Fig. S5 Double potential chronoamperometric switching between +3 V and -2 V and corresponding charge/discharge amounts of (a) polyFe, (b) PSS-polyFe12, and (c) PSS-polyFe11.