Supporting Information

Naphthalimide-arylamine Derivatives with Aggregation Induced Delayed Fluorescence for Realizing Efficient Green to Red Electroluminescence

Shuo Chen,^a Pengju Zeng,^a Weigao Wang,^a Xuedong Wang,^b Yukun Wu,^c Pengju Lin,^a Zhengchun Peng^{*,a}

^a Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China

^b Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) & Collaborative, Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, P.R. China

^c Key Lab of Advanced Transducers and Intelligent Control System, College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, P.R. China

Index

	Content	Page No.
Scheme S1	Synthetic routes of NAI-BIFA and NAI-PhBIFA.	1
Figure S1	¹ H NMR spectrum of compound DPNT .	1
Figure S2	¹ H NMR spectrum of compound DPMNA .	2
Figure S3	¹ H NMR spectrum of compound NAIBr-DPM.	2
Figure S4	¹ H NMR spectrum of compound BPFB .	3
Figure S5	¹ H NMR spectrum of compound NAI-BiFA.	3
Figure S6	¹ H NMR spectrum of compound NAI-PhBiFA.	4
Figure S7	¹³ C NMR spectrum of compound NAI-BiFA.	4
Figure S8	¹³ C NMR spectrum of compound NAI-PhBiFA.	5
Figure S9	MS spectrum of compound NAIBr-DPM.	5
Figure S10	HR-MS spectrum of compound BPFB .	6
Figure S11	HR-MS spectrum of compound NAI-BiFA.	6
Figure S12	HR-MS spectrum of compound NAI-PhBiFA.	7
Figure S13	AIE-active of NAI-BIFA and NAI-PhBIFA	8
Figure S14	TGA thermograms of NAI-BiFA and NAI-PhBiFA.	9
Figure S15	DSC thermograms of NAI-BiFA and NAI-PhBiFA.	10
Figure S16	Cyclic voltammogram of compouds NAI-BiFA and NAI-PhBiFA in the anode scan.	11
Figure S17	Comparison of the electroluminescence spectra and the photoluminescence spectra	11
Figure S18	PL transient decay spectra at 77 K and 300 K	12
Figure S19	Power efficiency-luminance characteristics of OLEDs	13
Calculation	Calculation of Rate Constants	14

Scheme S1. Synthetic routes of the investigated compounds NAI-BiFA and NAI-PhBiFA.

Figure S1. ¹H NMR spectrum of compound DPNT.

Figure S2. ¹H NMR spectrum of compound DPMNA.

Figure S3. ¹H NMR spectrum of compound NAIBr-DPM.

Figure S4. ¹H NMR spectrum of compound BPFB.

Figure S5. ¹H NMR spectrum of compound NAI-BiFA.

Figure S6. ¹H NMR spectrum of compound NAI-PhBiFA.

Figure S7. ¹³C NMR spectrum of compound NAI-BiFA.

Figure S8. ¹³C NMR spectrum of compound NAI-PhBiFA.

Figure S9. MS spectrum of compound NAIBr-DPM.

Figure S11. HR-MS spectrum of compound NAI-BiFA.

Figure S12. HR-MS spectrum of compound NAI-PhBiFA.

Figure S13. (a) PL spectra of **NAI-BiFA** and **NAI-PhBiFA** in THF/H₂O mixtures with different water fractions (f_w) and (b) Changes in the emission intensity of **NAI-BiFA** and **NAI-PhBiFA** in THF–H₂O mixtures with various volume fractions of water (0–90%). Inset: Photographs of **NAI-BiFA** (top) and **NAI-PhBiFA** (bottom) in solvents with increased f_w under 365 nm hand lamp irradiation.

Figure S14. TGA diagram for NAI-BiFA and NAI-PhBiFA recorded at a heating rate

of 10 °C min⁻¹ under nitrogen flushing.

Figure S15. DSC spectra of the first and second heating cyclings for **NAI-BiFA** (a) and **NAI-PhBiFA** (b), at a heating rate of 10 $^{\circ}$ C min⁻¹ under nitrogen flushing.

Figure S16. Cyclic voltammogram of compouds **NAI-BiFA** and **NAI-PhBiFA** in the anode scan.

Figure S17. Comparison of the electroluminescence spectra of OLEDs (solid line) and the photoluminescence spectra of the thin films (dash line).

Figure S18. PL transient decay spectra at 77 K and 300 K for 5 wt%-doped thin films of **NAI-BiFA** and **NAI-PhBiFA** in a CBP host.

Figure S19. Power efficiency-luminance characteristics of OLEDs based on NAI-BiFA (a) and NAI-PhBiFA (b).

Calculation of Rate Constants

The rate constants were calculated according to following equation:

$$k_r(S_1 \rightarrow S_0) = \frac{\Phi_p}{\tau_p}$$

$$k_{nr}(S_1 \rightarrow S_0) = k_r \frac{1 - \Phi_{PL}}{\Phi_{PL}}$$

$$k_{ISC}(S_1 \rightarrow T_1) = k_r \left(\frac{1}{\Phi_p} - \frac{1}{\Phi_{PL}}\right)$$
S3

$$k_{RISC}(T_1 \rightarrow S_1) = \frac{\Phi_{PL}}{k_r \tau_p \tau_d}$$
 S4

Where τ_p and τ_d represent lifetimes of the prompt and delayed decay components, respectively. Φ_{PL} , Φ_p and Φ_d represent PL quantum yield, quantum yields for prompt fluorescence and delayed fluorescence, respectively ($\Phi_{PL} = \Phi_p + \Phi_d$). k_r , k_{nr} , k_{ISC} and k_{RISC} represent the rate constant for fluorescence <u>radiative</u> decay, <u>nonradiative</u> internal conversion, <u>intersystem crossing</u> (ISC) and <u>reverse intersystem</u> <u>crossing</u> (RISC), respectively.

Φ_p and Φ_d can be calculated by Equations S5 and S6

$$\Phi_{p} = \frac{A_{1} \cdot \tau_{p}}{A_{1} \cdot \tau_{p} + A_{2} \cdot \tau_{d}} \Phi_{PL}$$

$$\Phi_{d} = \frac{A_{2} \cdot \tau_{d}}{A_{1} \cdot \tau_{p} + A_{2} \cdot \tau_{d}} \Phi_{PL}$$
S5

Where A1 and A2 represent frequency factors. Transient PL curves could be fitted

$$I(t) = A_1 \cdot \exp\left(-\frac{t_1}{\tau_p}\right) + A_2 \cdot \exp\left(-\frac{t_2}{\tau_d}\right)$$
with a biexponential model as: