From Gallium-Based Supramolecular Square Nanoplates to $\gamma\text{-}Ga_2O_3$ Layer Nanosheets *

Ya Qian Wang,^a Le Xin Song,^{*a,b}, Yue Teng,^c Fang Wang,^a Wei Ping Wang,^a Mao Mao Ruan,^a Zun Yang^a and Zhe Yuan Xu^a

^a Department of Chemistry, University of Science and Technology of China, Jinzhai Road 96, Hefei 230026, P. R. China

E-mail: solexin@ustc.edu.cn; Fax: +86-551-63601592;

^b National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China

^c State Grid Anhui Electric Power Research Institute, Ziyun Road 299, Hefei 230601, P. R. China

A list of the contents for all the Supporting Information

Pages	Contents						
1	A table of contents						
2	Experimental Section						
3	Figure S1. The fractional mass loss per second (v , % s ⁻¹) as a function of temperature for GAA, β -CD,						
	β -CD-GAA-1, at heating rate of 10 K min ⁻¹						
4	Figure S2. The UV-Vis spectra and Job's plot of the solutions of GAA and β -CD						
5	Figure S3. The FE-SEM images of the β -CD-GAA samples obtained at 273 and 283 K						
6	Figure S4. The XRD patterns of the γ -Ga ₂ O ₃ samples obtained by sintering of the β -CD-GAA-2 at 623						
	and 723 K for 2 h in air						
7	Figure S5. The XRD patterns of the γ -Ga ₂ O ₃ samples and the JCPDS cards of γ -, α -, β -Ga ₂ O ₃ , and MgAl ₂ O ₄ .						
	Figure S6. The FE-SEM images of the γ -Ga ₂ O ₃ samples obtained by sintering of the β -CD-GAA-2 at						
8	623 (A) and 723 K (B) for 2 h in air						
	Figure S7. The N ₂ adsorption-desorption isotherms and pore size distributions (inset) of the γ -Ga ₂ O ₃ -1						
9	and -2						
	Figure S8. The room temperature UV-Vis DRS of the γ -Ga ₂ O ₃ -1 and -2						
10	Figure S9. The calculation of the exciton Bohr radius of the γ -Ga ₂ O ₃						
11	Figure S10. The PL spectra of the γ -Ga ₂ O ₃ -1 and -2						
12	Table S1. Photoresponses of different Ga ₂ O ₃ materials for solar-blind photodetection						
13							

15

Experimental Section

Preparation of the nanostructured Supramolecular materials (NSMs): In the preparation experiments, all the reagents ⁵ were analytical grade and were used without further purification. The NSMs were synthesized by a grinding process. For example, gallium acetylacetonate (GAA) (200 mg, 0.544 mmol) and β-cyclodextrin (β-CD) (617 mg, 0.544 mmol) was added to an agate mortar, and the mixture was ground for 30 min at room temperature and dried in a vacuum desiccator over phosphoric oxide. The sample obtained at the temperature was named as β-CD-GAA-1, and the other sample obtained at 353 K was named as β-CD-GAA-2. The other NSMs were obtained at different temperatures: 273, 283, 313 and 333 K. ¹⁰ ¹H nuclear magnetic resonance (¹H NMR) data of β-CD, GAA and GAA-β-CD-1 are as follows. ¹H NMR (400 MHz, 298 K) of β-CD: δ 5.085 (d, 7H, J = 3.7 Hz, C₁H of β-CD), 3.965 (t, 7H, J = 9.5, C₃H of β-CD), 3.893 (s, 7H, C₆H of β-CD), 3.855 (s, 7H, C₅H of β-CD), 3.680 (d, 7H, J = 3.7, C₂H of β-CD), 3.594 (d, 7H, J = 9.0, C₄H of β-CD). ¹H NMR (400 MHz, 298 K) of β-CD-GAA-1: δ 5.076 (d, 7H, J = 3.5 Hz, C₁H of β-CD), 3.947 (t, 7H, J = 9.5, C₃H of β-CD), 3.874 (d, 7H, J = 4.3, ¹⁵ C₆H of β-CD), 3.830 (s, 7H, C₅H of β-CD), 3.616 (t, 7H, J = 3.7, C₂H of β-CD), 3.587 (d, 7H, J = 9.2, C₄H of β-CD), 5.165 (c, H J = 3.5 Hz, CH of β-CD), 3.616 (t, 7H, J = 3.7, C₂H of β-CD), 3.587 (d, 7H, J = 9.2, C₄H of β-CD), 5.165 (c, H J = 3.5 Hz, CH of β-CD), 3.616 (t, 7H, J = 3.7, C₂H of β-CD), 3.587 (d, 7H, J = 9.2, C₄H of β-CD), 5.165 (c, H J = 3.5 Hz, CH of β-CD), 3.616 (t, 7H, J = 3.7, C₂H of β-CD), 3.587 (d, 7H, J = 9.2, C₄H of β-CD), 5.165 (c, H J = 3.5 Hz, CH of β-CD), 3.616 (t, 7H, J = 3.7, C₂H of β-CD), 3.587 (d, 7H, J = 9.2, C₄H of β-CD), 5.165 (c, H J = 3.5 Hz, CH of β-CD), 3.616 (t, 7H, J = 3.7, C₂H of β-CD), 3.587 (d, 7H, J = 9.2, C₄H of β-CD), 5.165 (c, H J = 3.5 Hz, CH of β-CD), 3.616 (t, 7H, J = 3.7, C₂H of β-CD), 3.587 (d, 7H, J = 9.2, C₄H of β-CD), 5.165 (c, H J = 3.5 Hz, C

(s, H, J = 3.5 Hz, CH of GAA), 2.020 (d, 3H, J = 6.5 Hz, CH₃ of GAA).

Preparation of the γ -Ga₂O₃ **materials:** The three γ -Ga₂O₃ materials were synthesized by a sintering process of the β -CD-GAA-2 at different temperatures. For example, the γ -Ga₂O₃-1 was prepared by sintering of the β -CD-GAA-2 at 673 K for ²⁰ 3.5 h. The other two γ -Ga₂O₃ samples were obtained by sintering of the β -CD-GAA-2 at 623 and 723 K for 3.5 h. The γ -Ga₂O₃-2 was synthesized by sintering of the free GAA (200 mg, 0.544 mmol) at 673K for 3.5 h.

Material characterization: XRD measurements were recorded on a Philips X'Pert Pro X-ray diffractometer using a monochromatized Cu K α radiation source (40 kV, 40 mA) with a wavelength of 0.1542 nm and analyzed in the range of $^{25} 20^\circ \le 2\theta \le 80^\circ$. Field emission scanning electron microscope (FE-SEM) images were performed by using a Supra 40 operated at 5 kV. Thermogravimetry (TG) was performed on a DTGA-60H thermogravimetric analyzer at a constant heating rate of 10.0 K min⁻¹ under a nitrogen atmosphere with a gas flow of 25 mL min⁻¹. Fourier transform infrared (FT-IR) spectra were obtained on a Bruker Equinox 55 spectrometer with KBr pellets in the range of 400~4000 cm⁻¹ with a resolution of less than 0.09 cm⁻¹. The ¹H nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 30 300 NMR solid spectrometer at 400 MHz at ambient temperature unless otherwise stated. Nitrogen adsorption/desorption isotherms were obtained using Micromeritics ASAP-2000 at 77 K. UV-Vis diffuse-reflectance spectrum (DRS) was

recorded employing a Shimadzu DUV-3700 spectrophotometer in the wavelength between 220 and 2000 nm. Barium sulfate powder was used as the reflectance standard material to adjust baseline parameters. Photoluminescence (PL) measurements were performed on a Perkin Elmer Luminescence spectrometer L550B at room temperature (excited at 325 nm).

Photoresponse properties: The solid-state device was made of γ -Ga₂O₃, and the ends of γ -Ga₂O₃ were connected with two Ti/Au electrodes. The fabrication process is as follows. First, a Ti/Au film with a thickness of about 200 nm was deposited by magnetron sputtering (Sputter-Lesker Lab18) on a glass substrate. Then, a channel with a width of about 40 µm was ⁴⁰ created through a laser etching process. At the same time, γ -Ga₂O₃ was ground in a mortar and suspended in ethanol using

an ultrasonic bath for half an hour. After that, 1 μ L of the suspension was dropped in the channel between the two Ti/Au electrodes. At last, the device was dried in an oven at 353 K for 2 h. A 254 nm light (XS-T5, 6W) was illuminated on γ -Ga₂O₃, and the photoresponse performance was measured by a CHI 760 electrochemical workstation with a two-electrode configuration. The power density is 28.4 μ W·cm⁻².

Figure S1. The fractional mass loss per second (ν , % s⁻¹) as a function of temperature for GAA, β -CD, β -CD-GAA-1, at heating rate of 10 K min⁻¹. The maximum decomposition temperature of the GAA and β -CD in the supermolecule were advanced by about 21 and 16 K, respectively.

Figure S2. A) The UV-Vis spectra and B) Job's plot of the solutions (total moles of solutes, TM) of GAA and β -CD (the R is a molar ratio of GAA to the TM).

Figure S3. The FE-SEM images of the β -CD-GAA samples obtained at 273 (A) and 283 K (B).

Figure S4. The XRD patterns of the γ -Ga₂O₃ samples obtained by sintering of the β -CD-GAA-2 at 623 and 723 K for 2 h in air.

Figure S5. The XRD patterns of the γ -Ga₂O₃ samples and the JCPDS cards of γ -, α -, β -Ga₂O₃, and MgAl₂O₄.

Figure S6. The FE-SEM images of the γ -Ga₂O₃ samples obtained by sintering of the β -CD-GAA-2 at 623 (A) and 723 K (B) for 2 h in air.

Figure S7. The N₂ adsorption-desorption isotherms and pore size distributions (inset) of the γ -Ga₂O₃-1 (A) and -2 (B).

⁵ The permanent porosity of the γ -Ga₂O₃-1 and -2 samples was confirmed by gas sorption isotherm measurements performed in liquid nitrogen. The nitrogen adsorption–desorption isotherm (Figure S7) indicates a *type IV* isotherm profile with a *type H3* loop, which is often observed with aggregates of plate-like particles giving rise to slit-shaped pores.^[1,2] Thus, the slit-shaped pores between the aggregated particles might be the origin of the porosity in the γ -Ga₂O₃ samples.

10 **D**

References:

¹⁾ R. R. Duran, J. L. Blin, M. J. Stebe, C. Castel and A. Pasc, J. Mater. Chem., 2012, 22, 21540.

²⁾ K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska, *Pure Appl. Chem.*, 1985, **57**, 603.

Figure S8. The room temperature UV-Vis DRS of the γ -Ga₂O₃-1 and -2.

Figure S9. The calculation of the exciton Bohr radius of the γ -Ga₂O₃.

The exciton Bohr radius (a_B) of the γ -Ga₂O₃ can be calculated using the equation, ³⁻⁴

$$a_{\rm B} = \frac{h^2 \varepsilon \varepsilon_0}{\pi e^2 \mu}$$

s where ε , ε_0 , *h* and *e* are the static dielectric constant, permittivity of free space, Planck constant and electron charge, respectively. μ is the reduced mass of an electron-hole pair, and it can be determined by the equation:

$$1/\mu = 1/m_{\rm e} + 1/m_{\rm h}$$

where m_e and m_h are the effective mass of an electron and hole, respectively.⁴ The m_e is small and ¹⁰ almost isotropic, having a value of 0.27~0.28 m_0 , where m_0 is the electron mass. The m_h values along

the Γ -Z direction and Γ -A direction were estimated to be around 40 m_0 and 0.40 m_0 , respectively.⁵ The ε value is about 10.0,⁶ and the calculated a_B of the γ -Ga₂O₃ is less than 3.29 nm. Thus, the shift of 0.22 eV in the bandgap from the γ -Ga₂O₃-2 (4.98 eV) to γ -Ga₂O₃-1 (4.76 eV) should not arise from the quantum confinement effect since the diameter of the nanoparticles is no less than 3.29 nm. Therefore,

¹⁵ we consider that the difference in the band gap of the γ -Ga₂O₃-**2** and γ -Ga₂O₃-**1** is due to the structural difference between them, since the structural difference often causes different electronic band structures in metal oxides.

References:

25

30

- ²⁰ 3) F. Zeng, X. Zhang, J. Wang, L. Wang, L. Zhang, *Nanotechnology*, 2004, **15**, 596.
 - 4) S. Stepanov, V. Nikolaev, V. Bougrov, A. Romanov, Rev. Adv. Mater. Sci., 2016, 44, 63.
 - 5) W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg, Y. Bando, J. Mater. Chem., 2012, 22, 17984.
 - 6) Y. Hou, L. Wu, X. Wang, Z. Ding, Z. Li, X. Fu, J. Catal., 2007, 250, 12.

Figure S10. The PL spectra of the γ -Ga₂O₃-1 (black line) and -2 (red line). The blue arrow indicates the red shift of the maximum emission positions.

Namamataniala	LC	DC	RT	DT	LDR	Wavelength	PD	Bias	Ref.
Nanomateriais	/nA	/nA	/s	/s		/nm	$/\mu W \cdot cm^{-2}$	/ V	
γ-Ga ₂ O ₃ -1	1.48×10^{4}	0.9	0.06	0.06	1.64×10^4	254	28.4	0.1	This work
γ-Ga ₂ O ₃ - 2	2.01×10^{3}	2.61	0.2	0.2	770	254	28.4	0.1	This work
γ -Ga ₂ O ₃ nanospheres	1.83×10^{3}	18	0.1	0.1	2.29×10^{3}	254	28.4	0.1	7
γ -Ga ₂ O ₃ nanoflowers	66	0.3	< 0.1	-	220	254	-	0.5	8
γ -Ga ₂ O ₃ microspheres	54	4.4	-	-	12	254	-	0.5	8
β -Ga ₂ O ₃ nanospheres	60	1.4	_	-	43	254	-	0.5	8
β-Ga ₂ O ₃ fiim	8×10^{2}	40	-	0.07	20	254	45	10	9
β-Ga ₂ O ₃ nanowires	0.56	0.026	0.5	-	21	254	-	20	10
β -Ga ₂ O ₃ thin film	4	0.31	0.62	0.83	13	254	60	1	11
β-Ga ₂ O ₃ film	2.9×10^{3}	0.62	_	-	4.7	255	17	20	12
β-Ga ₂ O ₃ nanowires	6	2×10^{-4}	-	< 0.02	3×10^{4}	254	2×10^{3}	50	13
β -Ga ₂ O ₃ nanowires	10	0.015	0.22	0.09	666	254	-	8	14
β-Ga ₂ O ₃ microwires	1.1×10^{2}	2.1	1×10-4	9×10 ⁻⁴	52	251	-	2	15
β-Ga ₂ O ₃ flakes	1.80×10^{3}	23	_	-	78	254	-	10	16
β -Ga ₂ O ₃ nanobelts	-	-	91	36	100	250	0.72	30	17
β -Ga ₂ O ₃ nanobelts	< 0.1	$< 10^{-4}$	< 0.3	< 0.3	10 ³	250	98.3	5	18
β-Ga ₂ O ₃ nanosheets	2.5	0.2	0.03	0.06	12	254	500	10	19

Table S1. Photoresponses of different Ga₂O₃ materials for solar-blind photodetection.

5 References

- 7) M. M. Ruan, L. X. Song, Z. Yang, Y. Teng, Q. S. Wang and Y. Q. Wang, J. Mater. Chem. C, 2017, 5, 7161.
- 8) Y. Teng, L. X. Song, A. Ponchel, Z. K. Yang, J. Xia, Adv. Mater., 2014, 26, 6238.
- 9) D. Guo, H. Liu, P. Li, Z.Wu, S. Wang, C.Cui and W.Tang, ACS Appl. Mater. Inter., 2017, 9, 1619.
- ¹⁰ 10) P. Feng, X. Y. Xue, Y. G. Liu, Q. Wan, T. H. Wang, *Appl. Phys. Lett.*, 2006, **89**, 112114.
- 11) D. Guo, Z. Wu, Y. An, X. Guo, X. Chu, C. Sun, L. Li, P. Li, W. Tang, Appl. Phys. Lett., 2014, 105, 023507.
- 12) G. C. Hu, C. X. Shan, Nan Zhang, M. M. Jiang, S. P. Wang, D. Z. Shen, Opt. Express, 2015, 23, 13554.
- 13) Y. B. Li, T. Tokizono, M. Y. Liao, M. A. Zhong, Y. Koide, I. Yamada, J. J. Delaunay, Adv. Funct. Mater., 2010, 20, 3972.
- 14) P. Feng, J. Y. Zhang, Q. H. Li, T. H. Wang, Appl. Phys. Lett., 2006, 88, 153107.
- 15 15) B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, D. Zhao, Nano Lett., 2015, 15, 3988.
 - 16) S. Oh, J. Kim, F. Ren, S. J. Pearton and J. Kim, J. Mater. Chem. C, 2016, 4, 9245.
 - L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, D. Golberg, *Nanoscale*, 2011, 3, 1120.
 - 18) R. J. Zou, Z. Y. Zhang, Q. Liu, J. Q. Hu, L. W. Sang, M. Y. Liao, W. J. Zhang, Small., 2014, 10, 1848.
- 20 19) W. Feng, X. Wang, J. Zhang, L. Wang, W. Zheng, P. Hu, W. Cao, B. Yang, J. Mater. Chem. C, 2014, 2, 3254.