Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Densely cross-linked polysiloxane dielectric for organic thin-film transistors with enhanced electrical stability

Joo-Young Kim,^{a,b‡} Eun Kyung Lee,^{a‡} Jiyoung Jung,^a Don-Wook Lee,^a Youngjun Yun,^a Jong Won Chung,^a Jeong-Il Park,^a and Jang-Joo Kim^{*b}

^aMaterial Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics, Suwon, Gyeonggi-do 16678, Republic of Korea ^bDepartment of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea

Joo-Young Kim and Eun Kyung Lee contributed equally to this work.

Corresponding Author

*Jang-Joo Kim (jjkim@snu.ac.kr)

Table S1 Summarized characteristics of organic-inorganic hybrid dielectrics and performance of the devices fabricated employing them as gate dielectric in literature

Dielectric Material	Process condition	Thickness	¹⁾ J-V range	²⁾ k	Active layer	SAM	Mobility	Hysteresis	³⁾ ∕⊿ V _{Th}	D.f
		(nm)	(MV cm ⁻¹)				(cm² V ⁻¹ s ⁻¹)	(V)	(V)	Ket.
3-methacryloxypropyltrimethoxysilane and zirconium propoxide	170 °C	190 - 265	2	5.5	^{a)} DHα4T	-	1.0×10 ⁻³	N/A	N/A	23
DPSD (diphenylsilanediol) and MPTMS (3-(Trimethoxysilyl)propyl methacrylate)	150°C, UV	40	3	3.1	Pentacene	-	0.3	Negligible	N/A	24
Anthryl-terminated alkyl-phosphonic acid on UV cured sol-gel HfOx	200°C, UV	4.8	2	-	Pentacene / ^{b)} TIPS-Pentacene	^{g)} PA derivative	0.32 / 0.38	Negligible	N/A	25
PMSQ (poly(methyl silsesquioxane))	150°C	450	3	3.6	^{c)} P3HT	-	7.1 ×10 ⁻³	Negligible	on, -1 V (1,000 s)	26
ZrCl4 and α,ω -disilylalkane	150°C, Vacuum	20 - 43	2	5 - 10	Pentacene	-	0.1 - 1.6	Negligible	N/A	27
Solution based ZrO ₂ (zirconium-(IV) acetylacetonate as a precursor)	UV	5 - 6	3	~10	^{d)} PBTTT-C14	^{h)} ODPA	0.2	N/A	N/A	28
Cyclotetrasiloxane and melamine	80°C	400	1	3.79	Pentacene	-	0.36	3.3	N/A	29
ZrTA (zirconium tetraacrylate)	120°C	50 - 60	2	5.48	Pentacene	-	0.5	Negligible	N/A	30
PPMSQ (poly(phenyl-co-methacryl silsesquioxane))	200°C	920 - 980	1	3.1 - 3.6	Pentacene / ^{e)} PTCDI-C8	-	0.53 / 0.17	N/A	N/A	31
PMMS (poly[(mercaptopropyl)methyl- siloxane])	R.T	1,000	2	5.4	^{f)} DPP-DTT / Pentacene	-	5.5×10 ⁻² / 1.3×10 ⁻³	Negligible	on/off, ~3 V (10,000 s)	32
LPSQ-TMS (trimethylsilyl-capped hybrid ladder-like polysilsesquioxane)	110°C	500	2	-	Pentacene	-	0.6	Negligible	N/A	33
poly(azomethine) containing the isobutyl- substituted T8 cages	100°C	-	N/A	-	РЗНТ	-	4.3×10 ⁻³	Negligible	N/A	34

¹⁾Range of electric field applied for evaluating dielectric strength reported (leakage current), ²⁾dielectric constant ³⁾Shift of threshold voltage under the on/off bias stress condition

^{a)}α,ω-Dihexylquaterthiophene, ^{b)} 6,13-bis(triisopropyl-silylethynyl) pentacene, ^{c)}poly(3-hexylthiophene-2,5-diyl), ^{d)}Poly(2,5-bis(3-tetradecylthiophen-2yl(thieno[3,2-b]thiophene), ^{e)}N,N'-dioctyl-3,4,9,10-perylenedicarboximide, ^{f)}Diketopyrrolopyrrole-dithiophene-thienothiophene, ^ganthryl-terminated alkyl-phosphonic acid, ^{h)}octadecylphosphonic acid

Fig. S2 (a) ²⁹Si NMR of PSUA solution (oligomer) (b) ²⁹Si CP-MAS NMR of cross-linked PSUAC thin-film (solid)

Fig. S5 AFM image analysis of DBTTT morphologies deposited on (a) PSUAC (b) PECVD SiO_2