Supporting information to

Increased charge carrier mobility and molecular packing of a solution sheared diketopyrrolopyrrole-based donor-acceptor copolymer by alkyl side chain modification

Mike Hambsch^{1,2*}, Tim Erdmann^{1,3#}, Annabel R. Chew⁴, Sigrid Bernstorff⁵, Alberto

Salleo⁴, Anton Kiriy^{1,3}, Brigitte Voit^{1,3}, Stefan C.B. Mannsfeld^{1,2*}

¹ Center for Advancing Electronics Dresden, Technische Universität Dresden, 01062

Dresden, Germany

² Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany

³ Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany

⁴ Department of Materials Science and Engineering, Stanford University, Stanford, CA
94305, USA

- ⁵ Elettra-Sincrotrone Trieste, 34149 Basovizza, Italy
- [#] Present address: IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120, USA.

*email: <u>mike.hambsch@tu-dresden.de</u>, <u>stefan.mannsfeld@tu-dresden.de</u>

Materials

Fig. S1 Molecular structure of the DPP- and thiophene-based co-monomers used in this work.

Thermal properties

Fig. S2 TGA curves of P(DPP2ODT2-T) and P(DPP6DOT2-T). Decomposition temperatures T_d were determined at 5 % weight loss.

Fig. S3 Differential scanning calorimetry curves of P(DPP2ODT2-T) (2nd heating and 1st cooling scan) and P(DPP6DOT2-T).

The following comparison of the discussed DPP-based polymer pair to pairs of hydrocarbons, potentially representing the polymers side-chains, shows that the large difference in melting temperatures between the polymers cannot be solely explained by the increase in molecular weight (**Table S3**) and that the absolute mass of the respective hydrocarbons must be taken into consideration. The reason for the latter can be seen by the non-linear increase of melting temperatures within the homologous series of linear hydrocarbons (**Figure S4**) and by the therefore resulting decrease in Δ Tm with chain-length (**Figure S5**). This points to a not linear but weakening gain in London dispersion forces with increasing the chain length due to a weakening relative influence on the polarizability with increasing chain-length for the homologous series of n-alkanes.

Linear hydrocarbons paired with a chain-length difference of 10 and 20 carbon atoms Figure S4 Melting temperature of linear hydrocarbons stacked to have a relative chain*length difference of 10 (orange⇔green / green⇔blue) or 20 carbon atoms (orange⇔blue)* along the vertical. Data listed by NIST (for C56 by Sigma Aldrich).

Linear hydrocarbons paired with a chain-length difference of 10 and 20 carbon atoms

Figure S5 Chain-length dependence of the melting temperature difference of hydrocarbon pairs having a relative chain-length difference of 10 (red) or 20 carbon atoms (blue). For instance, the first data point of the red graph is the melting temperature difference (ΔT_m) between hydrocarbon C_8H_{18} and $C_{18}H_{38}$ and the first blue datapoint ΔT_m between C_8H_{18} and C₂₈H₅₈.

Optoelectronic properties

Fig. S6 Thin-film UV-Vis absorption spectra of P(DPP2ODT2-T) and P(DPP6DOT2-T).

Fig. S7 Cyclic voltammogram of a P(DPP2ODT2-T) and P(DPP6DOT2-T) thin film.

Transistor characteristics

Fig. S8 Average saturation mobility of P(DPP6DOT2-T) transistors with solution sheared films on different SAMs and for different coating speeds.

Fig. S9 Gate voltage dependent saturation mobility for spin coated and solution sheared P(DPP6DOT2-T) transistors for different SAMs. It can be seen that the mobility is dependent on the gate voltage especially for the high mobility devices on the ODTMS SAM.

NMR spectroscopy and GPC results

Fig. S10 ¹H NMR spectrum of P(DPP6DOT2-T) in $C_2D_2Cl_4$ at 393 K.

Fig. S11 GPC curves of P(DPP2ODT2-T) and P(DPP6DOT2-T) in CHCl₃ at 40 °C.

Fig. S12 HT-GPC curves of P(DPP2ODT2-T) and P(DPP6DOT2-T) in 1,2,4-trichlorobenzene at 150 °C.

	Ē1/2, Fc/Fc+ [V] ^a	Ēonset, ox [V] ^b	λ ^{abs} onset [nm] ^c	Eg [eV] ^d	Еномо [eV] ^e	Е⊔имо [eV] ^f
P(DPP2ODT2-T)	0.095	0.600	924	1.34	-5.60	-4.26
P(DPP6DOT2-T)	0.087	0.548	948	1.31	-5.55	-4.24

^a Average half-wave potential of Fc/Fc⁺ vs. Ag/Ag⁺-reference electrode calculated from 3 scans before and after the CV measurement series. ^b Average onset oxidation (ox) potential determined from at least 3 individual CV scans. ^c Estimated from the absorption edge to high wavelengths. ^d Calculated by $E_g \approx 1240 \text{ nm}/\lambda_{onset}^{abs}$ [eV]. ^e Calculated by $E_{HOMO} = -(5.09 + \bar{E}_{onset,ox} - \bar{E}_{1/2,Fc/Fc+})$ [eV]. ^f Calculated by $E_{LUMO} = E_{HOMO} + E_g$.

Time of measurement	Initial	2 weeks	16 weeks	58 weeks	
V _{th} [V]	20 ± 2	18 ± 2	17 ± 1	15 ± 1	
µ _{sat,avg} [cm²/Vs]	0.6 ± 0.04	0.7 ± 0.03	0.6 ± 0.04	0.5 ± 0.03	
µ _{sat,min} [cm²/Vs]	0.4 ± 0.1	0.3 ± 0.02	0.3 ± 0.03	0.3 ± 0.03	
µ _{sat,max} [cm²/Vs]	1.1 ± 0.06	1.5 ± 0.3	1.3 ± 0.2	0.8 ± 0.09	

Table S2 Parameters of solution sheared P(DPP6DOT2-T) transistors measured at various times after fabrication.

Table S3: Comparison of the melting point behavior between the discussed DDP-based polymers and selected hydrocarbons

Ion/Ioff

Compound	M of repeating unit or hydro- carbon [g/mol]	ΔM [g/mol]	Number of (side-)chain carbon atoms	Δ in number of (side-)chain carbon atoms	T _m [°C]ª	ΔT _m [K]
P(DPP6DOT2-T) P(DPP2ODT2-T)	1139.95 859.41	280.54	C30 / C60 ^b C20 / C40 ^b	10 / 20	349 270	79
Octacosane Octane	394.76 114.23	280.53	C28 C8	20	61 -57	118
Triacontane Eicosane	422.81 282.55	140.26	C30 C20	10	66 37	29
Hexacontane Tetracontane	843.61 563.08	280.53	C60 C40	20	101 81	20

^a Melting temperature as derived from DSC experiments for the polymers or as listed by the National Institute of Standards and Technology (NIST, U.S. Department of Commerce) for the hydrocarbons. ^b Taking into consideration that one repeating unit holds two side chains.