Supporting Information

Role of gallium and yttrium dopants on the stability and performance of solution processed indium oxide thin-film transistors

Felix Jaehnike, ^{†,‡} Duy Vu Pham, [†], Claudia Bock[§] and Ulrich Kunze[‡]

[†]Evonik Industries AG, 45772 Marl, Germany.

[‡] Werkstoffe und Nanoelektronik, Ruhr-Universität Bochum, 44801 Bochum, Germany.

§ Mikrosystemtechnik, Ruhr-Universität Bochum, 44801 Bochum, Germany

Corresponding Author

E-Mail: claudia.bock@rub.de

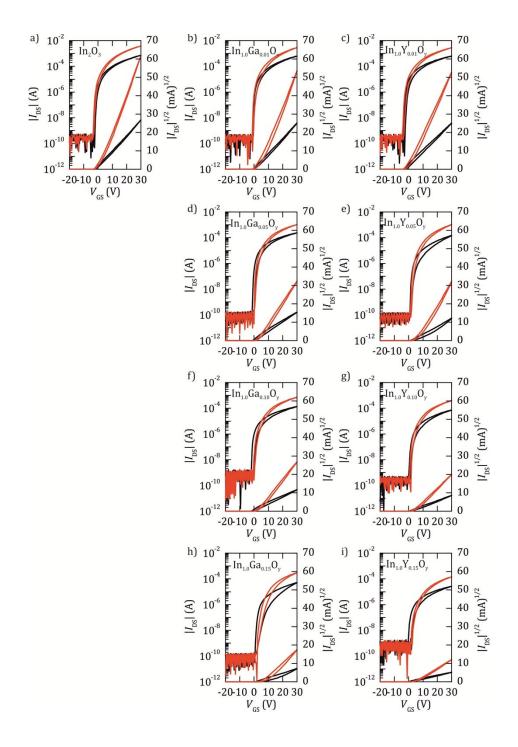


Fig. S 1: Transfer characteristics of TFTs with different metal-oxides as semiconductor material: In_2O_3 (first column), InGaO (second column) and InYO (third column) in the proportions b, c) 100:1, d, e) 100:5, f, g) 100:10 and h, i) 100:15. Black curves: $V_{DS} = 2$ V, red curves: $V_{DS} = 10$ V.

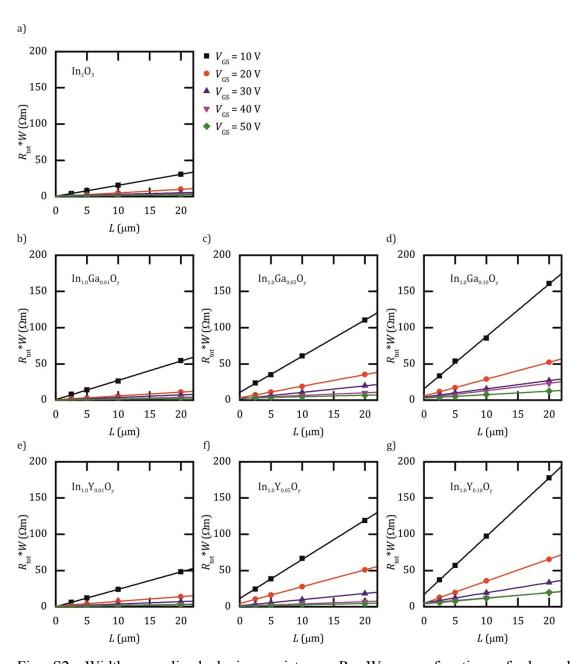


Fig. S2: Width-normalized device resistance $R_{tot*}W$ as a function of channel length *L* (10 V $\leq V_{GS} \leq 50$ V) for transistors with (a) undoped In₂O₃, (b-d) In_{1,0}Ga_xO_y with *x* = 0.01; 0.05; 0.1 and (e-g) In_{1,0}Y_xO_y with *x* = 0.01; 0.05; 0.1.

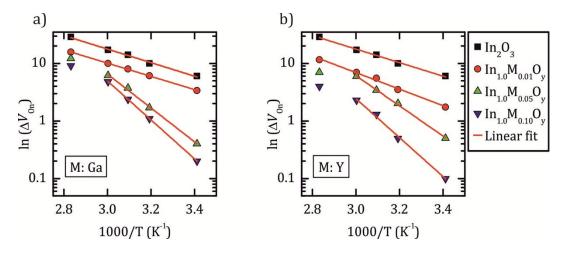


Fig. S 3: Semi-logarithmic scale of the onset voltage shift ΔV_{on} during temperature stress versus the reciprocal temperature of TFTs with different metal oxide compositions: a) indium oxide and In_{1.0}Ga_xO_y and b) Indium oxide und In_{1.0}Y_xO_y with x = 0.01, 0.05, 0.10. The red curves are the linear fits of the data points.