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I. HUANG-RHYS FACTORS

To ensure that the electronic coupling methodology
outlined in the main manuscript is applicable to our sys-
tems of interest, we have to show that our approxima-
tion of using the ground-state MD trajectory is suffi-
cient to describe the excited state. To this end, we use
a measure of mean displacement, i.e. the Huang-Rhys
parameter D, which must be less than one but prefer-
ably close to zero. A value near zero indicates that the
ionic and electronic structure is not perturbed substan-
tially upon an excitation. To calculate D, we excite an

electron from the HOMO to the LUMO in each system
and obtain the excited state geometry, which is then pro-
jected onto the phonon modes of the system and the best
match is chosen. From this, we find the displacement d
of the atom which moves the most, the reduced mass
m = mymsa/(m1 + mz) (where m; is the mass of the
vibrating atom and ms is the mass of its nearest neigh-
bor), and wy corresponding to the angular frequency of
the matching phonon mode. D can then be calculated as
D = d?mwy/2h, and we find D = 0.24 for RPM3-Zn and
0.06 for DNT+RPM3-Zn.



Mode DNT+RPM3-Zn DNT Exp. Shift Calc. Shift

[em™!] [em™] [em™] [em™]
2(C—H) pheny! ring 3104 3106 2 3
Vas(NO2) 1517 1534 17 16
vs(NO2) 1343 1348 5 6
v(C-N) 1152 1133 —-19 —11
§(NO,) 916 913 -3 4
w(NO2) 732 732 0 2

TABLE S1. Assigned experimental IR modes of DNT in Figs. 3 and S3. The shifts of
DNT peaks due to the adsorption inside RPM3-Zn are shown alongside the corresponding
calculated ones. Assignments are made with the help of our DFT calculations and in
conjunction with Ref. [1].

Mode RPM3-Zn DNT+RPM3-Zn
[em™] [em™!]
v(C=C)ppee 1639 1639
V(C=C)bpdc 1621 1621
V(C=CH){pe 1413 1413
y(C=C-H)} .. 1261 1261
V(C=C-H) pee 1228 1228
V(C=C-H){ o0 1212 1212
v(C=C-H)bpdc 1175 1170
v(C-O)bpdc 1353 1353

TABLE S2. Assigned experimental IR modes of the
bpee and bpdc linkers in Figs. 3 and S3. Assignments
are made with the help of our DFT calculations and
in conjunction with Refs. [2-4].
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Figure S1. Powder X-ray diffraction (PXRD) patterns for samples of activated RPM3-Zn
(black) and DNT4+RPMS3-Zn (blue) overlaid on the simulated PXRD pattern of RPM3-Zn
(black dashed). All PXRD data was collected at room temperature on a Rigaku Ultima
IV diffractometer using Cu Ko radiation (A = 1.5406 A).
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Figure S2. Band decomposed charge density images of RPM3-Zn (left) and DNT+RPM3-Zn
(right). The HOMO is shown in blue and the LUMO is depicted in yellow, both at an isosurface
value of 2 x 1073 e/A?’. The adsorption of DNT shifts the LUMO away from the MOF linker
to the guest molecule.
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Figure S3. IR spectrum of DNT (brown) along with the IR difference spectrum between
DNT+RPM3-Zn and RPM3-Zn (gray). The difference spectrum is also plotted after 20

minutes of evacuation (dashed).
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Figure S4. Experimental and computed RPM3-Zn (black)
and DNT+RPM3-Zn (blue) absorption spectra. Both plots are
normalized such that the RPM3-Zn peak height is 1. The com-
puted spectra were calculated along the 1000 fs MD trajectory
while the experimental spectra applied the Kubelka Munk equa-
tion to the reflectance data.
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Figure S5. Plot of the RPM3-Zn and DNT+RPM3-Zn os-
cillator strengths at each time step along the 1000 time step
MD trajectory. The quenching effect of DNT on the photolu-
minescence, as well as the observed emission red shift, is clearly
visible.
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Figure S6. Thermal ellipsoid images of RPM3-Zn at T'= 50 K (left), T = 300 K (middle), and T = 550 K (right) at 99%
probability. It is clear that increased temperature increases the amount of vibration, but the calculated oscillator strength
values do not markedly decrease with increased vibration. The variance U was calculated using the methods outlined under
the Computational Details section. Thermal ellipsoids for hydrogen are not depicted for clarity.
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Figure S7. Thermal ellipsoid images of RPM3-Zn (left) and DNT+RPM3-Zn (right) at 99%
probability for T" = 300 K. The variance U was calculated using the methods outlined under
the Computational Details section. Thermal ellipsoids for hydrogen are not depicted for clarity.
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Figure S8. Electron and hole relaxation of RPM3-Zn (top) and DNT+RPM3-Zn (bottom) for a lower energy
transition at 340 nm/3.65 eV (left) and a higher energy transition at 260 nm/4.77 eV (right). Yellow indicates a
gain of an electron, blue indicates a loss of an electron (i.e. hole), and green indicates no change in charge. The
corresponding real-space relaxations can be found in Fig. S9.
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Figure S9. Electron and hole relaxation in real space along the z-axis of RPM3-Zn (top) and DNT+RPM3-Zn
(bottom) for a lower energy transition at 340 nm/3.65 eV (left) and a higher energy transition at 260 nm/4.77 eV
(right). Yellow indicates a gain of an electron, blue indicates a loss of an electron (i.e. hole), and green indicates
no change in charge. The plots are obtained by integrating the charge density in the zy-plane and showing the
result for all z values in the unit cell as a function of time. See Fig. 6 in the main manuscript for the alignment
with the crystal structure.
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