Supporting Information

Simple and efficient rhodamine-derived VO²⁺and Cu²⁺-responsive colorimetric

and reversible fluorescent chemosensors toward the design of multifunctional

materials

Daoyong Jiang^a, Xingying Xue^a, Guoning Zhang^b, Yucheng Wang^b, Han Zhang^a, Chao Feng^c, Zhifei Wang^a and Hong Zhao^a, *

^a School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
 ^bInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
 ^cSchool of Materials and Chemical Engineering, Bengbu University, Bengbu 233030, PR China
 *Corresponding author E-mail address: <u>zhaohong@seu.edu.cn</u>

Apparatus and Reagents

The ¹H NMR and ¹³C NMR spectra were run on a Bruker spectrometer using TMS as the internal standard. Elemental analysis was carried out with a Vario EL CHNS elemental analyzer. The mass spectrum was recorded with a VG ZAB-HS double focusing mass spectrometer (Thermo Onix Ltd, UK) or measured on a LC/MSD-Trap-XCT instrument. The FT-IR spectrum was collected on a Nicolet 5700 spectrometer (Thermo Electron Scientific Instruments Corp., America). Fluorescence spectra, fluorescence lifetime and quantum efficiency were measured with a Fluorolog 3-TSCPC and integrating sphere accessory (Horiba Jobin Yvon Inc., France). The UV–vis absorption spectra were measured on a Helios Gamma spectrophotometer. All the chemicals used in the present study were of high purity analytical grade (Merck, Aladdin, Sinopharm) and used as received without further purification. The solutions of metal ions were prepared from their analytical grade nitratesalts or chloridesalts except that VO²⁺ was prepared from its sulfatesalt (VOSO₄·H₂O) and Hg²⁺(Hg(ClO₄)₂ • 3H₂O). All biological reagents were purchased from Sangon Biotech. MCF-7 cells were obtained from the Chinese Academy of Sciences Cells Bank. Water used throughout the experiment was purified by distillation of deionized water.

X-ray crystallographic data collection and refinement of RhDBS

Single-crystal X-ray diffraction data for **RhDBS**, **RhBS** and **RhHS** were conducted on a Rigaku SCXmini CCD diffractometer with graphite-monochromatized Mo Ka radiation (k = 0.71073 Å) at room temperature using the x-scan technique. Lorentz polarization and absorption corrections were

applied. The structures were solved by direct methods with SHELXS-97 [1] and refined with the fullmatrix least-squares technique using the SHELXL-97 [2] program. All nonhydrogen atoms were refined anisotropically. All H atoms were added according to theoretical calculations and refined isotropically. Single crystal structures of **RhBS** and **RhHS** were depicted (Fig. S1, ESI) and crystallographic data were provided (Table S1, ESI). The CCDC number of **RhDBS** and **RhBS** is 1447673 and 1447674 respectively.

Compound	RhDBS	RhBS	RhHS
Mol. Form.	$C_{35}H_{34}N_4O_3Br_2$	$C_{35}H_{35}N_4O_3Br$	$C_{35}H_{36}N_4O_4$
Form. weight	718.48	639.58	576.68
T / K	293(2)	293(2)	293(2)
Col. and form	Strip,popcorn	Strip, pale pink	Strip, pale pink
Crystal system	monoclinic	monoclinic	monoclinic
Space group	$P2_{1}/c$	$P2_{1}/c$	$P2_{1}/c$
a / Å	11.757 (2)	21.676 (4)	9.4461 (4)
b / \mathring{A}	12.113 (2))	11.875 (2)	26.6905 (12)
c / Å	22.483 (5)	12.363 (3)	12.2453 (5)
$\alpha / ^{o}$	90	90	90
$\beta / \circ \circ$	90	90	104.423 (2)
γ / ⁰ °	90	90	90
V/\AA^3	3202.1 (11)	3182.1 (11)	2990.0 (2))
Ζ	4	4	4
<i>F</i> (000)	1464	1328	1224
D_{calcd} ./ g cm ⁻³	1.490	1.335	1.281
μ / mm ⁻¹	2.57	1.33	0.09
θ range / °	3 to 25	3 to 25	1.5. to 25.1
Ref.coll./unique	18350/ 5644	17362/5017	15630/ 5130
R _{int}	0.073	0.067	0.087
Completeness	99.9%	99.9%	99.8%
Parameters	402	393	393
GOOF	1.04	1.07	1.02
$R_1[I \ge 2\sigma(I)]^{a,b)}$	0.063	0.051	0.07
$wR_2(alldata)^{a,b)}$	0.141	0.112	0.215
Residues/eÅ ⁻³	1.18 ,-0.5	0.28 ,-0.34	0.25 ,-0.22

Table S1. Crystallographic information table for RhDBS, RhBS, RhHS

 $\underline{w} = 1/[\sigma^2(F_o^2) + (0.0482P)^2 + 3.7273P]; w = 1/[\sigma^2(F_o^2) + (0.0381P)^2 + 0.4426P]; w = 1/[\sigma^2(F_o^2) + (0.0857P)^2], where P = (F_o^2 + 2F_c^2)/3.$

Fig. S1. Crystal structures of (a) RhBS and (b) RhHS (all hydrogen atoms were omitted for clarity).

The influence of media

The sensing medium was firstly studied to obtain the optimised spectral response by **RhDBS**. Sensor **RhDBS** exhibited good solubility in different polar organic solvents including dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), and acetonitrile (CH₃CN). First, we measured the Cu²⁺ ion (200 μ M) with **RhDBS** (20 μ M) in various solvents to select a solvent system. **RhDBS** exhibits good sensitivity for Cu²⁺ in DMSO–buffer mixed solution, pure DMSO, DMF, and MeCN solution (Fig. S2, ESI). However, due to the interference of Hg²⁺, it shows poor selectivity in pure acetonitrile solution. Furthermore, taking into account higher toxicity of DMF than DMSO, the DMSO–buffer and DMSO solutions are favorable for the UV–vis and fluorescence spectral measurement. To control the emission intensity, the fluorescence behaviour of chemosensor **RhDBS** in different ratios of DMSO/Tris-HCl solutions was investigated (Fig. S3, ESI). It can be observed that upon adding of 10 equiv VO²⁺, the dilute aqueous solution of **RhDBS** showed sharply enhanced fluorescence when the DMSO fraction was over 70%. For these reasons, in this work, DMSO/Tris-HCl buffer (pH 7.4, 7:3, v/v) was used throughout the experiment.

Fig. S2. The absorption spectra of RhDBS(10µM) in the presence of 10eqv. Cu²⁺ in different solvents (acetonitrile,

N,N-dimethylformamide, dimethyl sulfoxide, dimethyl sulfoxide-buffer mixture solution).

Fig. S3. Plot of fluorescence intensity of RhDBS (20 μ M) and RhDBS-VO²⁺ at 586 nm versus solvent composition of DMSO/buffer mixture ($\lambda_{ex} = 520$ nm).

Effect of pH

The influence of pH changes on absorption and fluorescence intensity of **RhDBS** and its Cu^{2+} complex and VO^{2+} complex have been investigated respectively (Fig. S4, ESI). The pH-titration experiments showed that the absorbance and emission intensity of the free **RhDBS** are almost no changes in the pH range 3.0-11.0 and 3.0-9.0 respectively, whereas the absorbance of Cu^{2+} complex decreases sharply from pH 9.5 to 11.0 and emission intensity of VO^{2+} complex decreases dramatically in the pH range 7.0-9.0. The data suggested that a wide pH range of 3.0-10.0 is proper for the detection of Cu^{2+} ions and for the determination of VO^{2+} ions being pH range of 3.0-8.0, bacause VO^{2+} is not stable in higher pH value solution [3]. Thus, the sensor **RhDBS** can be an appropriate candidate for the potential use under physiological conditions.

Fig. S4. pH dependence of (a) Absorbance responses of **RhDBS** and its [**RhDBS** +Cu²⁺] complex and (b) Fluorescence responses of **RhDBS** and its [**RhDBS** +VO²⁺] complex ($l_{ex} = 520$ nm, slit: 2.5/2.5).

Fig. S5. Fluorescence spectra of **ReBS** (20 μ M) in the presence of various metal ions (20 Eq. except Fe³⁺ that are 10 Eq.) in DMSO-Tris-HCl (7:3, v/v, pH 7.4) solution ($\lambda_{ex/em}$ = 520/586 nm; slit: 5 nm/5 nm).

Fig. S6. Fluorescence spectra of RhDGM (20 μ M) in the presence of various metal ions in MeOH-H₂O (4:1, v/v) solution ($\lambda_{ex/em}$ = 520/586 nm; slit: 5 nm/5 nm).

Fig. S7. Fluorescence spectra of RhDFS (20 μ M) in the presence of various metal ions (10 Eq.) in DMSO-Tris-HCl (7:3, v/v, pH 7.4) solution ($\lambda_{ex/em}$ = 520/589 nm; slit: 2.5 nm/5 nm).

Compounds (optimized structure)	HOMO(eV)	LUMO(eV)	$\triangle E(eV)$	VO ²⁺ et al. cations sensing property
	-6.0928	-2.3392	3.7536	NO
S ₁	-6.3920	-2.6656	3.7264	NO
	-6.4192	-1.9040	4.5152	NO
	-6.1744	-1.6048	4.5696	Cu^{2+}
S4	-5.9296	-1.4144	4.5152	NO
S₅ L1	-4.5424	-1.1424	3.4	NO
L ₂	-5.0592	-2.2576	2.8016	Cu ²⁺
L ₃	-5.032	-2.0128	3.0192	Cu^{2+}
Al	-6.4736	-2.5568	3.9168	NO

Table S2. DFT calculation data of all ligands and the sensing performance for VO^{2+} and other cations.

Photophysical property of control compounds

Scheme S1. The structures of the acceptors S1-S5.

10 ml 1.0 x 10^{-5} M solutions of the control compounds S₁-S₅, L₁-L₃ and A1-A6 were prepared separately by dissolving appropriate amount of the ligands in DMF-H₂O (1:9, v/v), and DMF for all the fluorescence studies.

Fig. S8. Emission spectra of compounds S_1 - S_5 , L_1 - L_3 in DMF-H₂O (1:9, v/v) solution.

Table S3. Excitation and emission wavelength of S1-S5, L1-L3

Compound	\mathbf{S}_1	S_2	S_3	S_4	S_5	L_1	L_2	L ₃
$E_x(nm)$	465	465	449	369	371	387	466	430
$E_m(nm)$	585	595	487	441	434	487	577	502

Fig. S9. Emission spectra of compounds A1-A6 in DMF solution. Table S4. Excitation and emission wavelength of A1-A6

				-			
Compound	A1	A2	A3	A4	A5	A6	
$E_x(nm)$	420	420	375	375	375	375	
E _m (nm)	488	489	435	435	483	434	

Fig. S10. The relative fluorescence intensity of L_1 (20 μ M) in the presence of various metal ions (20 Eq. except Cu^{2+} that are 10 Eq.) in DMF-H₂O (9:1, v/v, pH = 7.4, 0.1 M Tris-HCl) solution ($\lambda_{ex/em}$ = 400/513 nm; slit: 5 nm/5 nm).

Fig. S11. Fluorescence spectra of L₂ (20 μ M) in the presence of various metal ions (20 Eq. except Cu²⁺ that are 10 Eq.) in DMSO-H₂O (6:4, v/v) solution ($\lambda_{ex/em}$ = 362/437 nm; slit: 5 nm/5 nm).

Fig. S12. Fluorescence spectra of L₃ (20 μ M) in the presence of various metal ions (20 Eq. except Cu²⁺ that are 10 Eq.) in DMSO-H₂O (7:3, v/v) solution ($\lambda_{ex/em}$ = 364/500 nm; slit: 5 nm/5 nm).

Fig. S13. Fluorescence spectra of **A2** (20 μ M) in the presence of various metal ions (20 Eq. except Mg²⁺ that are 10 Eq.) in DMSO-Tris-HCl (7:3, v/v, pH 7.4) solution ($\lambda_{ex/em}$ = 403/475 nm; slit: 5 nm/5 nm).

Fig. S14. Photograph of RhDBS (20 μ M) showing the color (top) and the fluorescent (bottom) changes in the presence of various cations (20 Eq).

Fig. S15. Job's plots for (a) Cu^{2+} and (b) for VO^{2+} .

Fig. S16. MS of RhDBS+ VO^{2+} .

Fig. S18. (a) Absorption and (b) fluorescence spectra of **RhDBS** (20 μ M) with various metal ions (20 Eq.) and Cu²⁺/VO²⁺(10 Eq.) in DMSO–Tris-HCl (7:3, v/v, pH 7.4) solution. The black and red bars represent the absorption or emission intensity of **RhDBS** in the presence of other metal ions (20 Eq.) and in the presence of the selected metal ions, followed by addition 10 Eq. of Cu²⁺/VO²⁺ ion, respectively.

Fig. S19. calibration curve for (a) VO^{2+} and (b) for Cu^{2+} .

Fig. S20. QY of RhDBS in aqueous DMSO solution.

Fig. S21. QY of RhBS.

Table S5. Quantum yield and lifetime value for the **RhDBS**(20 μ M) in the presence and absence of VO²⁺ ion. Conditions: λ_{exc} = 520 nm; T= 298 K; DMSO:H₂O (7:3, v/v).

S.No	Ex (nm)	Em (nm)	$^{a}\tau_{l}(ns)$	$a\tau_2(ns)$	T _{avg} (ns)	CHI-SQ	Quantum Yield $(\Phi_F\%)$	Kr	Knr	K _r /K _{nr}
RhDBS	520	NA	0.95 (86.96)	2.44 (13.04)	1.03	1.35	0.028	0.0003	0.9706	0.0003
RhDBS+ VO ²	520	586	1.84 (100)	0	1.84	1.23	70.114	0.381	0.1624	2.346
RhBS	520	NA	0.41 (92.64)	3.6 (7.36)	0.44	0.905	0.058	0.0013	2.2714	0.0006
RhBS+ VO ²⁺	520	586	0.588 (89.31)	3.02 (10.69)	0.64 3	1.13	26.158	0.4068	1.1484	0.3542
RhHS+ VO ²⁺	520	586	-	-	-	-	0.902	-	-	-
RhS+ VO ²⁺	520	586	-	-	-	-	10.824	-	-	-

Absorption of S. $\lambda_{max} = 560$ nm; Fluorescence excitation $\lambda_{exc} = 520$ nm; Fluorescence emission $\lambda_{max} = 586$ nm. Concentration of VO²⁺ (10 eq.); ^a Abundances shown in brackets.

Fig. S24. Time course of the response of **RhDBS** (20 μ mol/L, DMSO/Tris-HCl buffer, pH = 7.4) to 10.0 μ mol/L, 20.0 μ mol/L, 40 μ mol/L of Cu²⁺ in aqueous solution. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. S25. Kinetics of the fluorescence enhancement of compound RhDBS(20 μ M) in the presence of different concentrations of VO²⁺. Fluorescence intensity is recorded at 586 nm. Excitation wavelength is 520 nm, slit: 2.5/5 nm.

Table So. Comparison of analytical behormances of our sensor with recently reported chemosen	nosensors
---	-----------

SI.	Sensing probe	Ex. (nm)/	Medium	LOD	Theory	Anion	Analytical	Advanced level	Bio- imaging	Ref.
no.		Em. (nm)			study	sensing	applications	logic gate study		
						property				
1.		505/554	ACN-HEPES (0.01 M, 4:1, v/v, pH 7.0)	NA(Cu ²⁺ , Hg ²⁺)	No	S ^{2.}	No	Yes	HepG2 and HeLa cells	[4]

2.		360/476	ACN	14.8 μM Cu ²⁺ 1.11 μM Zn ²⁺	Yes	SCN-	No	Yes	No	[5]
3.		NA	DMSO-H ₂ O (9:1, v/v)(Cu ²⁺); THF- H ₂ O(9:1, v/v)(Fe ³⁺)	0.26 μΜ Cu ²⁺ 0.1 μΜ Fe ³⁺	Yes	No	No	No	No	[6]
4.		NA	CH₃OH-HEPES (1:1, v/v, pH 7.0)	0.18 μM Cu ²⁺ 1.1 μM Ni ²⁺	Yes	No	Filter paper & silica gel	No	No	[7]
5.	᠉ᡩᡬᡃ᠉ᡩ	NA	DMSO-H2O(3:7, v/v)(Cu ²⁺); MeOH -H2O(3:7, v/v)	7.99 μM Cu ²⁺ 0.86 nM Ag ⁺	No	No	No	No	No	[8]
6.		483/576	ACN-HEPES (0.01 M, 1:99, v/v, pH 6.5)(Pb ²⁺); AC N-HEPES (0.01 M, 1:99, v/v, pH 7.2)(Cu ²⁺)	0.58 μM Cu ²⁺ 0.25 μM Pb ²⁺	Yes	No	No	No	HepG2 cells	[9]
7.		340/443	THF-Tris-HCl (9:1, v/v, pH 7.0)	1.26 μM Cu ²⁺ 2.45 μM Co ²⁺	No	No	No	No	No	[10]
8.		520/595	ACN(Al ³⁺); ACN-H ₂ O(2:3, v/v)	NA(Cu ²⁺ , Al ³⁺)	No	No	No	Yes	No	[11]
9.		310/401	СН₃ОН	1.2 µМ Cu ²⁺ 1.9 µМ Sn ²⁺	No	No	Natural water samples	No	No	[12]

10.		NA	DMSO-bis-Tris (0.01 M, 1:1, v/v, pH 7.0)	0.36 μM Cu ²⁺ 0.59 μM Cr ³⁺	Yes	No	Water samples & filter papers	No	No	[13]
11.		531/552	CH3CN-H2O (5:5, v/v)	39 nM Cu ²⁺ 1.49 mM Ce ⁴⁺	Yes	No	Filter paper	Yes	No	[14]
12.		530/583	MeOH-HEPES (10 mM, 1:1, v/v, pH 7.0)	μM (Cu ²⁺ , VO ²⁺)	No	P ₂ O ₇ ⁴⁻	No	No	No	[15]
13.	$(\mathbf{y}_{\mathbf{y}_{i}})_{\mathbf{y}_{i}} \in \mathbf{f}_{\mathbf{x}_{i}} = \mathbf{f}_{\mathbf{y}_{i}} + \mathbf{f}_{\mathbf{y}_{i}}$	310/425, 310/375	$\begin{array}{llllllllllllllllllllllllllllllllllll$	50 nm VO ²⁺ 0.5 μM Al ³⁺	Yes	No	No	No	No	[16]
14.		317/411	MeOH-H ₂ O (1:1, V/V)	μΜ VO ²⁺	Yes	EDTA	No	Yes	No	[17]
15.		colorimet ric	Acetic acid- Ammonia(pH 6.0)	0.103 μM VO ²⁺	No	No	Real water samples	No	No	[18]
16.	DPCSV	NA	BRB (0.04 M, pH 4.0)	1.2 μM V(IV)	No	No	Benfield sample	No	No	[19]
17.		520/586	DMSO-Tris-HCl (0.01 M, 7:3, v/v, pH 7.4)	0.84 μM Cu ²⁺ 3.65 nM VO ²⁺	Yes	P ₂ O ₇ ⁴⁻	Paper strip & TLC plate	Yes	MCF-7 cells	This work

TCSPC experiments

We have calculated the radiative rate constant (k_r) and the total non-radiative rate constant (k_{nr}) of the free **RhDBS**, and the **RhDBS**-VO²⁺ complex using the following equations [20]:

$$\tau^{-1} = k_{\rm r} + k_{\rm nr} \tag{1},$$

$$k_{\rm r} = \Phi/\tau \tag{2}.$$

Where τ , $k_{\rm r}$, $k_{\rm nr}$, and Φ are the mean fluorescence lifetime, radiative rate constant, the total non-radiative rate constant and fluorescence quantum yield, respectively. The results were listed in Table S5.

Electrochemical measurements

Cyclic voltammetry (CV) of the samples were performed on a CHI760D electrochemical workstation using a three-electrode system at room temperature. Platinum plates were used as working and counter electrodes, and saturated calomel electrode as the reference electrode. The working electrode was centrally placed to keep a minimum distance between the counter and reference electrodes for minimizing the IR drop effect. The surface of working electrode was thorough rinsing with doubly distillated water before every experimental assay. All electrochemical experiments were carried out under nitrogen saturated solutions.

Fig. S26. Cyclic Voltammetry spectra of chemosensor **RhDBS** observed upon addition of 1 equiv. of various metal ions in DMSO/H₂O (7:3,v/v, 100 μ M), KCl as supporting electrolyte and scanned at 50 mVs⁻¹.

Determination of quenching efficiency[21]

Quenching efficiency = $(I_0 - I_f)/I_0 \times 100$

In this equation I₀, I_f are the fluorescence intensities respectively, in the presence of 10 eqv. VO^{2+} and at the saturation of the interaction of PPi. Quenching efficiency of **RhDBS-**VO²⁺ for PPi ion = 95%.

Fig. S27. Truth table and the monomolecular circuit based on (A) VO^{2+} and Cu^{2+} and (B) VO^{2+} with PPi and PPi with Cu^{2+} .

Fig. S28. Fluorescent detection of VO²⁺ ions by paper film: after being sprayed with different concentration of aqueous VO²⁺ solutions (from left to right: 0 M, 10^{-7} M, 2×10^{-7} M, 5×10^{-6} M, 2×10^{-6} M, 5×10^{-6} M, 10^{-5} M, 2×10^{-5} M, 10^{-4} M, and 10^{-3} M). Top: day light; Bottom: UV light (365 nm).

Toxicity Evaluation

As a promising bio-probe, the cytotoxicity of the probe is also critical determinant for its long- and real-time and sensitively monitoring of the analytes. However, there are few reports on the investigation of the feature of the rhodamine-based sensor towards metal ions. To further evaluate the potential application of **RhDBS** as bio-probe for the detection of vanadyl in living cells, we studied their cytotoxicity in human breast carcinoma MCF-7 cells by determining cellular viability using an MTT assay. In the experiments, MCF-7 cells were incubated with different concentrations of **RhDBS** at dark for 24 h in advance. As shown in Fig. S28, **RhDBS** has no significant influence on cell viability even at high concentration of up to 100 μ M (cell viability~80%), exhibiting very low and negligible cytotoxicity of **RhDBS**. Therefore, the probe can be further tested in vitro.

Fig. S29. MTT assay of MCF-7 cells viability after incubation with RhDBS(0-100 µM) for 24 h.

Cell imaging

The human breast cancer cells (MCF-7) were cultured in Roswell Park Memorial Institute (RPMI-1640) supplemented with 10% fetal bovine serum (FBS, Hyclone), 100 μ g/mL penicillin and 100 μ g/mL streptomycin at 37°C in a humidified atmosphere containing 5% CO₂. 24 h before imaging, cells were seeded in laser scanning confocal microscope (LSCM) culture dishes. The dishes were subsequently incubated at 37 °C in a humidified atmosphere containing 5% CO₂.

Fig. S30. Visual color change upon mechanical grinding receptors (RhDBS, RhBS, RhDFS, RhFS, RhDIS, RhIS, RhHS, RhS) with the nitratesalts of Cu²⁺ and VO²⁺ ions and their emission spectra in the solid state (λ_{ex} = 400 nm, slit: 2.5/5 nm).

Sample	CIE 1931 indices	Em(nm)	Δλ(nm)
composition		()	()
RhDBS-VO ²⁺	x = 0.6388; y = 0.3608	615	86
RhBS-VO ²⁺	x = 0.6388; y = 0.3608	615	
RhDFS-VO ²⁺	x = 0.6329; y = 0.3667	613	
RhFS-VO ²⁺	x = 0.6479; y = 0.3497	619	
RhDIS-VO ²⁺	x = 0.6479; y = 0.3518	614	
RhIS-VO ²⁺	x = 0.6381; y = 0.3616	614	
RhHS-VO ²⁺	x = 0.657; y = 0.3427	621	
RhS-VO ²⁺	x = 0.6584; y = 0.3413	616	
ReDBS-VO ²⁺	x = 0.572; y = 0.4273	591	
ReBS-VO ²⁺	x = 0.5721; y = 0.4272	592	
RhDGM-VO ²⁺	x = 0.6533; y = 0.3464	619	
RhDBS-Cu ²⁺	x = 0.6597; y = 0.34	626	97
RhDBS(Solid)	x = 0.3462; y = 0.5108	529	-
RhDBS-VO ²⁺ (Solution)	x = 0.573; y = 0.4262	587	58

Table S7. CIE coordinates table.

Fig. S31. Thermogravimetric analysis (TGA) of **RhDBS**, **RhBS**, **ReDBS** and **ReBS** at heating rate 10 °C/ min under a N₂ atmosphere.

Synthesis of pyrazole derivatives:

Scheme S2. Synthetic routes of pyrazole derivatives.

To a solution of pyrazole derivatives (10 mmol) and glacial acetic acid (catalyst, two or three drops) in absolute ethanol was added aryl aldehyde dropwise with a CP. dropping funnel (10 mmol). The resulting solution was refluxed for 3 h. The expected compound A precipitated and it was then hot-filtered and washed with cold ethanol-diethyl ether, and finally the crude product was recrystallized with ethanol and dried under vacuum.

3-[(3,5-dibromo-2-hydroxyl-phenyl)-imine]-4-carbonitrile-1*H*-pyrazole (A1): orange solid, yield 56%. Elemental analysis (Calc. %): C 35.61 (35.71), H 1.75 (1.63), N 15.03 (15.14). IR (KBr, v, cm⁻¹): 3850 (m), 3420 (s), 2239 (s), 1600 (s), 1549 (w), 1491 (w), 1442 (w), 1378 (m), 1292 (m), 1222 (m), 1133 (w), 981 (w), 865 (w), 821 (w). ¹HNMR (300MHz, DMSO-d₆): δ = 13.699 (s, 1H, -C₄N₃H₂), δ = 13.000 (s, 1H, -OH), δ = 9.3000 (s, 1H, -CNH), δ = 8.5585 (s, 1H, -C₄N₃H₂), δ = 7.932 (s, 2H, -C₆H₂Br₂). ESI-MS m/z: calcd.for C₆H₄OBr₂: 251.892 found: 250.8 [M1-H]⁻;calcd.for C₇H₅ONBr₂: 277.912 found: 276.8 [M2-H]⁻;calcd.for C₁₁H₆ON₄Br₂: 369.95 found: 368.8 [M-H]⁻.

3-[(3,5-dichloro-2-hydroxyl-phenyl)-imine]-4-carbonitrile-1*H*-pyrazole (**A2**): orange solid, yield 80%. Elemental analysis (Calc. %): C 44.01 (44.11), H 1.79 (1.68), N 18.60 (18.70). IR (KBr, v, cm⁻)

¹): 3448 (s), 3228 (s), 2241 (s), 1608 (s), 1550 (w), 1448 (s), 1382 (s), 1180 (m), 842 (m), 735 (s), 632 (s). ¹HNMR (300MHz, DMSO-d₆): $\delta = 13.90$ (s, 1H, -C₄N₃H₂), $\delta = 13.40$ (s, 1H, -OH), $\delta = 9.31$ (s, 1H, -CNH), $\delta = 8.64$ (s, 1H, -C₄N₃H₂), $\delta = 7.91$ (s, 1H, -C₆H₂Cl₂), $\delta = 7.81$ (s, 1H, -C₆H₂Cl₂).ESI-MS m/z: calcd.for C₆H₃OCl₂: 161.984 found: 160.9 [M1-H]⁻;calcd.for C₇H₅ONCl₂: 190.02 found: 188.9 [M2-H]⁻;calcd.for C₁₁H₆ON₄Cl₂: 281.07 found: 278.9 [M-H]⁻.

3-[(2-hydroxyl-3-methoxyl-phenyl)-imine]-4-carbonitrile-1*H*-pyrazole (**A3**): yellow solid, yield 70%. Elemental analysis (Calc. %): C 59.40 (59.50), H 4.27 (4.16), N 23.03 (23.13). IR (KBr, v, cm⁻¹): 3448 (w), 3311 (w), 3275 (w), 2231 (s), 1613 (s), 1466 (s), 1381 (w), 1252 (s), 969 (s), 778 (s), 731 (s). ¹HNMR (300MHz, DMSO-d₆): $\delta = 13.74$ (s, 1H, -C₄N₃H₂), $\delta = 12.02$ (s, 1H, -OH), $\delta = 9.29$ (s, 1H, -CNH), $\delta = 8.61$ (s, 1H, -C₄N₃H₂), $\delta = 7.385$ (d, 1H, - C₆H₃), $\delta = 7.195$ (d, 1H, - C₆H₃), $\delta = 6.94$ (t, 1H, -C₆H₃), $\delta = 3.85$ (s, 3H, -OCH₃).ESI-MS m/z: calcd.for C₁₂H₁₀O₂N₄: 242.16 found: 265 [M+Na]⁺.

3-[(2-hydroxyl-3-methoxyl-phenyl)-imine]-1*H*-pyrazole (A4): yellow solid, yield 46%. Elemental analysis (Calc. %): C 60.72 (60.82), H 5.22 (5.10), N 19.22 (19.34). IR (KBr, v, cm⁻¹): 3448 (ms), 3150 (w), 1615 (s), 1477 (s), 1251 (s), 1070 (ms), 976 (s), 798 (ms), 784 (s), 736 (s). ¹HNMR (300MHz, DMSO-d₆): $\delta = 13.25$ (s, 1H, -C₃N₂H₃), $\delta = 12.87$ (s, 1H, -OH), $\delta = 9.09$ (s, 1H, -CNH), $\delta = 7.78$ (d, 1H, -C₃N₂H₃), $\delta = 7.21$ (d, 1H, -C₆H₃), $\delta = 7.12$ (d, 1H, -C₆H₃), $\delta = 6.91$ (t, 1H, -C₆H₃), $\delta = 6.53$ (d, 1H, -C₃N₂H₃), $\delta = 3.82$ (s, 3H, -OCH₃). ESI-MS m/z: calcd.for C₁₁H₁₁O₂N₃: 217.14 found: 240 [M+Na]⁺.

3-[(3-nitro-phenyl)-imine]-4-carbonitrile-1*H*-pyrazole (**A5**): off-white solid, yield 65%. Elemental analysis(Calc. %): C 54.65 (54.77), H 3.04 (2.93), N 28.93 (29.03),. IR (KBr, v, cm⁻¹): 3567 (m), 2242 (s), 1524 (s), 1354 (s), 810 (s), 741 (s), 1292 (m), 699 (s). ¹HNMR (300MHz, DMSO-d₆): δ = 13.75 (s, 1H, -C₄N₃H₂), δ = 9.22 (s, 1H, -CNH), δ = 8.80 (s, 1H, -C₄N₃H₂), δ = 8.62 (t, 1H, -C₆NH₄O), δ = 8.43 (d, 2H, -C₆NH₄O), δ = 7.84 (s, 1H, -C₆NH₄O).ESI-MS m/z: calcd.for C₁₁H₇O₂N₅: 241.216 found: 241.0 [M-H]⁻.

3-[(4-bromophenyl)-imine]-1*H*-pyrazole (**A6**): colourless solid, yield 40%. Elemental analysis (Calc. %) : C 48.02 (48.02), H 3.33 (3.22), N 16.70 (16.80). IR (KBr, v, cm⁻¹): 3178 (m), 3127 (m), 1620 (s), 1586 (s), 1485 (ms), 1376 (s), 1187 (s), 1061 (s), 1009 (s), 991 (s), 820 (s), 779 (s). ¹HNMR (300MHz, DMSO-d₆): δ = 12.76 (s, 1H, -C₃N₂H₃), δ = 8.88 (s, 1H, -CNH), δ = 7.865 (d, 2H, -C₆H₄Br), δ = 7.725 (d, 2H, -C₆H₄Br), δ = 7.725 (d, 1H, -C₃N₂H₃), δ = 6.44 (d, 1H, -C₃N₂H₃).ESI-MS m/z: calcd.for C₁₀H_{8Br}N₃: 250.094 found: 247.9 [M-H]⁻.

Table S8.	Crystallographic	information	table for AI, A4, A6.	

	A1	A4	A6
Empirical formular	$C_{11}H_6ON_4Br_2$	$C_{11}H_{11}O_2N_3$	$C_{10}H_8N_3Br$
Formula weight	370.00	217.23	250.10
Crystal size/mm ³	0.3×0.28×0.20	0.30×0.28×0.18	0.26×0.23×0.22
Temperature/K	293(2)	293(2)	293(2)

Crystal system	Monoclinic	Orthorhombic	Monoclinic
Space group	$P2_{1}/c$	$P2_{1}2_{1}2_{1}$	$P2_1$
a / Å	8.9518(8)	5.2596(5)	5.5766(5)
b/Å	14.1336(11)	11.9561(11)	5.1057(4)
c/Å	9.5923(10)	16.2307(15)	17.3046(14)
$\alpha/^{\circ}$	90.00	90.00	90.00
β /°	91.233(8)	90.00	94.285(9)
γ/ ⁰	90.00	90.00	90.00
$V/\text{\AA}^3$	1213.35(19)	1020.66(16)	491.33(7)
Ζ	4	4	2
$D_{calc}/\mathrm{g}\cdot\mathrm{cm}^{-3}$	2.026	1.414	1.691
μ/mm^{-1}	6.673	0.101	4.143
θ range/°	3.4 to 25.0	3.0 to 25.0	3.5 to 26.0
Reflections collected	5028	2765	1777
Independent reflections	2130	1763	1422
Observed reflections	1665	1471	1131
<i>F</i> (000)	712	456	248
Data/restraints/parameters	2130/0/168	1763/0/148	1422/1/129
Goodness-of-fit on F^2	1.062	1.170	1.09
R(all data)	$R_1 = 0.0537,$ $wR_2 = 0.0881$	$R_1 = 0.0615,$ $wR_2 = 0.1200$	$R_1 = 0.1028,$ $wR_2 = 0.2391$
<i>R</i> indexes $[I > 2\sigma(I)]$	$R_1 = 0.0367,$ $wR_2 = 0.0881$	$R_1 = 0.0489,$ $wR_2 = 0.120$	$R_1 = 0.0795,$ $wR_2 = 0.2321$
Largest diff. peak and			
and hole/e·Å ⁻³	1.05 and -0.79	0.13 and -0.18	0.88 and -1.12

a) $R = \Sigma \|F_o\| - |F_c\| / \Sigma |F_o|$; wR(F²)=[$\Sigma w(F_o^2 - F_c^2)^2 / \Sigma w(F_o^2)^2$]^{1/2}, w=1/[$\sigma^2(F_o^2) + (0.0351P)^2 + 1.1683P$] where P=($F_o^2 + 2F_c^2$)/3 for A1; w=1/[$\sigma^2(F_o^2) + (0.1347P)^2$] where P=($F_o^2 + 2F_c^2$)/3 for A4; w=1/[$\sigma^2(F_o^2) + (0.0425P)^2 + 0.1770P$] where P=($F_o^2 + 2F_c^2$)/3 for A6.

Fig. S32. Crystal structure of A1, the ellipsoid contour percent probability level is 30%.

Fig. S33. The hydrogen bonds (N1—H1…N3 and C9—H2…O) in crystals of A1.

Fig. S34. Crystal structure of A4, the ellipsoid contour percent probability level is 30%.

Fig. S35. The hydrogen bonds (N1—H1…N2 and C9—H3…O2) in crystals of A4.

Fig. S36. Crystal structure of A6, the ellipsoid contour percent probability level is 30%.

Fig. S37. The hydrogen bonds (N1—H1···N2 and C9—H3···O2)in crystals of A6.

Preparation of L₂-L₃

Scheme S2. Synthetic routes of receptors L₂, L₃.

The receptors (L_2-L_3) were synthesised by the same procedure mentioned below:

To the stirring solution of 2-equivalents of diaminomalenonitrile (DAMN) in distilled water add 2-3 drops of conc. HCl, followed by dropwise addition of methanolic solution of 1 equivalents of substituted benzaldehydes. The resulted imine solidifies within a minute, was filtered, washed with water and recrystalized with ethanol, and finally dried under vacuum.

L₂: ESI-MS, m/z: calcd for C₁₅H₁₅N₅, 265.32; found, $[M-H]^-264.12561.FT-IR$ (KBr, *v*/cm⁻¹): 3297(N-H); 3178(NH₂); 2903(C-H); 2224, 2205(C=N); 1597(C=N); 1582, 1550(C=C); 1368(C-N); 1150, 814(C-H). ¹H NMR (DMSO-*d*₆, 500 MHz) δ (ppm): 8.045 (d, *J*=9.00 Hz, 1H), 7.464 (bs, 2H), 7.458(d, *J*=8.50 Hz, 2H), 7.311 (d, *J*=15.50 Hz, 1H), 6.824(dd, *J*=9.00, 16 Hz, 1H), 6.745 (d, *J*=9.00 Hz, 2H),

2.988 (s, 6H) ; ¹³C NMR (DMSO-*d*₆, 300MHz) δ(ppm): 157.98, 151.27, 145.29, 129.15, 124.39, 122.93, 121.87, 114.61, 113.97, 113.65, 111.83.

L₃: ESI-MS, m/z: calcd for C₁₇H₁₇N₅, 291.356; found, $[M-H]^-$ 290.14121.FT-IR (KBr, ν/cm^{-1}): 3233(N-H); 3097(NH₂); 2986(C-H); 2233, 2208(C=N); 1662, 1624(C=N); 1595, 1548(C=C); 1330(C-N); 1120, 846, 801, 750(C-H); ¹H NMR(300 MHz, DMSO-*d*₆) δ (ppm): 8.23 (d, *J* = 12.1 Hz, 1H), 7.59 (d, *J* = 7.3 Hz, 2H), 7.43 (d, *J* = 3.4 Hz, 2H), 7.29 (d, *J* = 3.1 Hz, 1H), 6.35 (d, *J* = 11.2 Hz, 1H), 3.71 (s, 1H), 3.55 (s, 3H), 1.62 (s, 6H); ¹³C NMR (300 MHz, DMSO-*d*₆) δ (ppm): 154.05, 152.04, 142.33, 140.26, 128.28, 125.03, 122.12, 119.73, 114.10, 111.20, 91.54, 88.78, 48.80, 31.19, 27.46.

The other Schiff base receptors (S_1-S_5, L_1) were obtained according to the modified literature procedures [22].

Preparation of rhodamine derivatives

The rhodamine B hydrazide (M1) was prepared according to the literature method[23]. FT-IR(KBr, ν/cm^{-1}): 3430(-NH₂); 2968(-C-H); 1718(C=O, carbonyl); 1615(-NH₂). ESI-MS: m/z , calcd for C₂₈H₃₂N₄O₂, 456.576; found, [M+H]⁺457.26.

Rhodamine B-ethylenediamine (M2) was prepared according to the literature method with minor modifications[24]. The residue was dissolved in 1 M HCl completely to generate a clear red solution. 1 M NaOH was added to the solution dropwise with stirring until the pH of the solution reached 9-10. The suspension was filtered and washed with water, dried in vacuo, affording a pink solid. FT-IR (ν /cm⁻¹): 3433(–NH₂); 2970(–C–H); 1687(C=O, carbonyl); 1617(–NH₂). ESI-MS, m/z: calcd for C₃₀H₃₆N₄O₂, 484.628; found, [M+H]⁺ 485.292.

M3 was prepared according to the literature method [25].

RhBS: 85% yield. $T_d = 321 \,{}^{0}$ C; 1 H NMR (DMSO-d₆, 300 MHz) δ (ppm): 1.10 (t, 12H, NCH₂CH₃, J = 6.9 Hz), 3.34 (q, 8H, NCH₂CH₃, J = 6 Hz), 6.36 (dd, 2H, Xanthene-H, J₁= 3 Hz, J₂= 9 Hz), 6.43 (d, 4H, Xanthene-H, J = 9 Hz), 6.76 (d, 1H, Phen-H, J = 9 Hz), 7.13 (d, 1H, Phen-H, J = 9 Hz), 7.35 (dd, 1H, Phen-H, J₁= 3 Hz, J₂= 9 Hz), 7.51 (d, 1H, Phen-H, J = 3 Hz), 7.55-7.66 (m, 2H, Phen-H), 7.93 (d, 1H, Phen-H, J = 9 Hz), 9.03(s, 1H, NCH), 10.49(s, 1H, OH); 13 C NMR (300 MHz, DMSO-d₆) δ (ppm): 163.49, 156.04, 152.65, 150.76, 148.49, 146.43, 133.86, 133.57, 129.81, 128.73, 128.51, 127.40, 123.73, 122.92, 121.57, 118.50, 110.31, 108.09, 104.91, 97.36, 65.52, 43.50, 12.23; FT-IR (KBr, ν/cm^{-1}): 3400 (–OH); 2969 (–C–H); 1717 (C=O, carbonyl); 1633 (C=N); 1614 (ArCH); 1545, 1517, 1467, 1428(C=C); 1402, 1373(C-N); 1357 (C=O, carbonyl); 1330, 1304, 1274(–C–H); 1234, 1220(C-O); 1120, 822, 787, 757(–C–H); ESI–MS, m/z: calcd for C₃₅H₃₅BrN₄O₃, 639.57; found, [M+H]⁺ 641.19157.

RhS: ESI–MS, m/z: calcd for $C_{35}H_{36}N_4O_3$, 560.3; found, $[M+H]^+$ 561.4. FT-IR (KBr, ν/cm^{-1}): 2972 (C–H); 1693 (C=O, carbonyl); 1617 (C=N); 1548, 1516, 1428(C=C); 1307, 1266(–C–H); 1223(C-O); 1121, 817, 785, 757(–C–H).¹H NMR (DMSO-d₆, 300 MHz) δ (ppm): 1.09 (t, 12H, NCH₂CH₃, J = 6 Hz), 3.34 (q, 8H, NCH₂CH₃, J = 6 Hz), 6.36 (d, 2H, Xanthene-H, J = 6 Hz), 6.44 (d, 4H, Xanthene-H)

H, J = 6 Hz), 6.83 (t, 2H, Phen-H, J = 9 Hz), 7.13 (d, 1H, Phen-H, J = 9 Hz), 7.24 (t, 1H, Phen-H, J = 9 Hz), 7.30 (d, 1H, Phen-H, J = 9 Hz), 7.56-7.65 (m, 2H, Phen-H), 7.93 (d, 1H, Phen-H, J = 6 Hz), 9.10 (s, 1H, NCH), 10.44 (s, 1H, OH);

RhHS: ESI–MS, m/z: calcd for C₃₅H₃₆N₄O₄, 576.3; found, [M-H]⁻ 575.3. FT-IR (KBr, ν/cm^{-1}): 3240 (–OH); 2972 (–C–H); 1659 (C=O, carbonyl); 1620 (C=N); 1547, 1516, (C=C); 1331, 1271(–C–H); 1220(C-O); 1121, 816, 784, 755(–C–H). ¹H NMR (DMSO-d₆, 300 MHz) δ (ppm): 1.09 (t, 12H, NCH₂CH₃, J = 5.7 Hz), 3.31 (d, 8H, NCH₂CH₃, J = 6 Hz), 6.18 (s, 1H, Phen-H), 6.29 (d, 1H, Phen-H, J = 9 Hz), 6.36 (d, 2H, Xanthene-H, J = 6 Hz), 6.42 (s, 4H, Xanthene-H), 7.10 (d, 2H, Phen-H, J = 9 Hz), 7.58 (s, 2H, Phen-H), 7.90 (d, 1H, Phen-H, J = 6 Hz), 9.02(s, 1H, NCH), 9.95(s, 1H, OH), 10.63(s, 1H, OH);

RhDFS: ¹H NMR (DMSO-d₆,500 MHz) δ (ppm): 1.08 (s, 12H, NCH₂CH₃), 3.31 (t, 8H, NCH₂CH₃, J₁= 5 Hz, J₂= 10 Hz), 6.36 (d, 2H, Xanthene-H, J= 10 Hz), 6.43 (t, 4H, Xanthene-H, J₁= 10 Hz, J₂= 5 Hz), 7.05 (d, 1H, Phen-H, J = 5 Hz), 7.14 (d, 1H, Phen-H, J = 5 Hz), 7.25 (t, 1H, Phen-H, J₁= 5 Hz, J₂= 10 Hz), 7.65 (q, 2H, Phen-H, J = 10 Hz), 7.94 (d, 1H, Phen-H, J = 5 Hz), 9.18(s, 1H, NCH), 10.37(s, 1H, OH); ¹³C NMR (300 MHz, DMSO-d₆): 163.70, 152.73, 150.75, 149.77, 149.67, 148.54, 146.04, 141.47, 134.12, 128.90, 128.50, 127.53, 123.89, 123.08, 122.10, 108.70, 108.52, 108.13, 104.77, 97.33, 65.69, 43.57, 12.29; ESI–MS, m/z: calcd for C₃₅H₃₄F₂N₄O₃, 596.663; found, [M+H]⁺ 597.60.

RhDIS: ¹H NMR (DMSO-d₆,500 MHz) δ (ppm): 1.11 (s, 12H, NCH₂CH₃), 3.33 (t, 8H, NCH₂CH₃, J₁= 10 Hz, J₂= 15 Hz), 6.39 (d, 2H, Xanthene-H, J= 10 Hz), 6.47 (t, 4H, Xanthene-H, J₁= 15 Hz, J₂= 5 Hz), 7.16 (d, 1H, Phen-H, J = 5 Hz), 7.67 (q, 3H, Phen-H, J = 10 Hz), 7.98 (s, 2H, Phen-H), 8.87(s, 1H, NCH), 11.69(s, 1H, OH); ¹³C NMR (300 MHz, DMSO-d₆): 163.67, 156.09, 152.59, 151.06, 148.91, 148.65, 146.84, 138.90, 134.35, 128.97, 127.75, 127.47, 123.83, 123.21, 120.30, 108.29, 104.09, 97.50, 87.70, 82.07, 65.57, 43.60, 12.31; ESI–MS, m/z: calcd for C₃₅H₃₄I₂N₄O₃, 812.473; found, [M+H]⁺ 813.20.

RhFS: ¹H NMR (DMSO-d₆, 300 MHz) δ (ppm): 1.06 (t, 12H, NCH₂CH₃, J₁= 9 Hz, J₂= 6 Hz), 3.32 (q, 8H, NCH₂CH₃, J = 6 Hz), 6.43 (dd, 4H, Xanthene-H, J₁= 9 Hz, J₂= 21 Hz), 6.80 (q, 2H, Xanthene-H, J = 3 Hz), 7.05 (td, 1H, Phen-H, J₁= 9 Hz, J₂= 3 Hz), 7.13 (t, 1H, Phen-H, J₁=J₂= 3 Hz), 7.16 (d, 2H, Phen-H, J = 3 Hz), 7.56-7.65 (m, 2H, Phen-H), 7.93 (d, 1H, Phen-H, J = 9 Hz), 9.16(s, 1H, NCH), 10.20(s, 1H, OH); ¹³C NMR (300 MHz, DMSO-d₆) δ (ppm): 163.59, 156.78, 153.67, 153.33, 152.80, 150.78, 148.53, 147.17, 133.97, 128.88, 127.60, 123.90, 123.03, 120.27, 118.33, 117.67, 113.24, 108.12, 105.02, 97.35, 65.67, 43.52, 12.34; ESI–MS, m/z: calcd for C₃₅H₃₅FN₄O₃, 578.67; found, [M+H]⁺ 579.30.

RhIS: ¹H NMR (DMSO-d₆, 300 MHz) δ (ppm): 1.08 (t, 12H, NCH₂CH₃, J₁= 6 Hz, J₂= 9 Hz), 3.32 (d, 8H, NCH₂CH₃, J = 6 Hz), 6.43 (dd, 4H, Xanthene-H, J₁= 21 Hz, J₂= 9 Hz), 6.64 (d, 2H, Xanthene-H, J = 9 Hz), 7.13 (d, 1H, Phen-H, J= 9 Hz), 7.48 (d, 1H, Phen-H, J = 6 Hz), 7.63 (dd, 2H, Phen-H, J₁= 15 Hz, J₂= 9 Hz), 7.66 (d, 2H, Phen-H, J = 3 Hz), 7.93 (d, 1H, Phen-H, J = 9 Hz), 8.95(s, 1H, NCH), 10.49(s, 1H, OH); ¹³C NMR (300 MHz, DMSO-d₆) δ (ppm): 163.59, 156.67, 152.70, 150.96, 148.55, 146.09, 139.46, 135.82, 134.02, 128.87, 12851, 127.52, 123.85, 123.06, 122.22, 118.98, 108.15, 104.88, 97.37, 81.27, 65.51, 43.63, 12.37; ESI–MS, m/z: calcd for C₃₅H₃₅IN₄O₃, 686.58; found,

 $[M+H]^+$ 687.20.

ReBS: Yield: 0.286 g, 82%. $T_d = 296 \ {}^{0}$ C; 1 H NMR (DMSO-d₆, 300 MHz) δ (ppm): 1.10 (t, 12H, NCH₂CH₃, J = 6 Hz), 3.34 (q, 12H, CH₂, J = 9 Hz), 6.29 (s, 4H, Xanthene-H), 6.38 (s, 2H, Xanthene-H), 6.8 (d, 1H, Phen-H, J = 9 Hz), 7.02 (d, 1H, Phen-H, J = 6 Hz), 7.45 (t, 2H, Phen-H, J = 9 Hz), 7.51 (t, 2H, Phen-H, J = 3 Hz), 7.80 (d, 1H, Phen-H, J = 6 Hz), 8.03(s, 1H, NCH), 13.05(s, 1H, OH); 13 C NMR (300 MHz, DMSO-d₆) δ (ppm): 167.05, 164.70, 159.66, 153.16, 152.54, 148.31,134.36, 133.08, 132.55, 130.18, 128.16, 128.11, 123.46, 122.16, 120.15, 118.73, 108.77, 108.03, 104.93, 97.21, 63.88, 56.00, 43.49, 12.23; ESI-MS(m/z): calcd for C₃₇H₃₉BrN₄O₃, 667.622; found, [M+H]⁺ 669.22347; FT-IR (KBr, ν/cm^{-1}): 3436 (–OH); 2968, 2927 (–C–H); 1690 (C=O, carbonyl); 1634 (C=N); 1615 (ArCH); 1546, 1515, 1467, 1446, 1426(C=C); 1376(C-N); 1356 (C=O, carbonyl); 1329, 1305, 1266(–C–H); 1232, 1219(C-O); 1118, 819, 787, 759(–C–H).

ReDBS: Yield: 0.286 g, 82%. $T_d = 285 {}^{0}$ C; ¹H NMR (DMSO-d₆, 300 MHz) δ (ppm): 1.09 (t, 12H, NCH₂CH₃, J = 6 Hz), 3.37 (dd, 10H, CH₂, J₁ = 6 Hz, J₂ = 24 Hz), 3.44 (s, 2H, CH₂), 6.25-6.36 (m, 6H, Xanthene-H), 7.00 (d, 1H, Phen-H, J = 3 Hz), 7.41 (s, 1H, Phen-H), 7.49 (d, 2H, Phen-H, J = 3 Hz), 7.72 (s, 1H, Phen-H), 7.80 (t, 1H, Phen-H, J = 3 Hz), 8.05(s, 1H, NCH), 14.24(s, 1H, OH); ¹³C NMR (300 MHz, DMSO-d₆) δ (ppm): 167.37, 165.13, 161.36, 153.28, 152.50, 148.29, 140.23, 137.26, 133.45, 132.64, 129.98, 128.08, 123.46, 122.22, 118.39, 113.60, 108.08, 105.64, 104.72, 97.23, 64.01, 55.88, 53.06, 43.49, 12.25; FT-IR (KBr, *v*/cm⁻¹): 3430 (–OH); 2968, 2927 (–C–H); 1690 (C=O, carbonyl); 1634 (C=N); 1615 (ArCH); 1546, 1515, 1467, 1446, 1426(C=C); 1376(C-N); 1356 (C=O, carbonyl); 1329, 1305, 1266(–C–H); 1232, 1219(C-O); 1118, 819, 787, 759(–C–H); ESI-MS(m/z): calcd. for C₃₇H₃₈Br₂N₄O₃, 746.514; found, [M+H]⁺747.13309.

Scheme S3. Synthetic route of receptor RhGDM.

RhDGM: ¹H NMR (DMSO-d₆, 500 MHz) δ (ppm): 8.50 (d, J = 5.0 Hz, 1H), 8.30 (d, J = 10 Hz, 1H), 7.95 (d, J = 10 Hz, 1H), 7.67~7.53 (m, 3H), 7.07 (d, 2H, NH₂, J = 5 Hz,), 6.38 (t, 6H, J₁= 30 Hz, J₂= 10 Hz), 3.61 (d, J = 10 Hz, 8H), 1.09 (t, 12H, J₁= 10 Hz, J₂= 5 Hz). ¹³C NMR (300 MHz, DMSO-d₆) δ : 165.03, 152.86, 152.25, 149.07, 145.89, 135.20, 130.12, 129.45, 127.98, 127.82, 127.72, 124.27, 123.91, 114.48, 113.76, 108.60, 105.22, 103.06, 97.96, 66.26, 44.11, 12.91. ESI-MS, m/z: calcd for C₃₄H₃₄N₈O₂, 586.334; found, [M+H]⁺ 587.2.

Fig. S38. IR of M1、M2.

Fig. S39. IR of RhHS.

Fig. S40. IR of RhS.

Fig. S43. IR of ReDBS, ReBS.

Fig. S48. Mass spectrum of A5 in EtOH.

Fig. S49. Mass spectrum of A6 in EtOH.

Fig. S50. MS of L₂.

Fig. S53. MS of M2.

Fig. S56. MS of RhDFS.

Fig. S64. MS of ReDBS.

Fig. S65. ¹H NMR spectrum of A1 in DMSO-d₆.

Fig. S66. ¹H NMR spectrum of A2 in DMSO-d₆.

Fig. S67. ¹H NMR spectrum of A3 in DMSO-*d*₆.

Fig. S68. ¹H NMR spectrum of A4 in DMSO-d₆.

Fig. S69. ¹H NMR spectrum of A5 in DMSO-*d*₆.

Fig. S71. ¹H NMR spectrum of L₂ in DMSO-*d*₆.

Fig. S72. ¹³C NMR spectrum of L_2 in DMSO- d_6 .

Fig. S73. ¹H NMR spectrum of L_3 in DMSO- d_6 .

Fig. S74. ¹³C NMR spectrum of L₃ in DMSO-*d*₆.

Fig. S76. ¹³C NMR spectrum of RhDBS in DMSO-d₆.

10 0

Fig. S78. ¹³C NMR spectrum of RhBS in DMSO-d₆.

Fig. S80. ¹³C NMR of RhDFS in DMSO- d_6 .

Fig. S82. 13 C NMR of **RhDIS** in DMSO- d_6 .

Fig. S84. 13 C NMR of RhFS in DMSO- d_6 .

Fig. S86. ¹³C NMR of RhIS in DMSO- d_6 .

Fig. S90. ¹³C NMR spectrum of ReDBS in DMSO-d₆.

Fig. S92. ¹³C NMR spectrum of ReBS in DMSO-d₆.

Fig. S94. ¹³C NMR of RhDGM in DMSO-*d*₆.

References

[1] G.M. Sheldrick, SHELXS-97, in: Program for Solution of Crystal Structures, University of Göttingen, Germany, 1997.

[2] G.M. Sheldrick, SHELXL-97, in: Program for Refinement of Crystal Structures, University of Göttingen, Germany, 1997.

[3] E.D. Carpio, L. Hernández, C. Ciangherotti, V.V. Coa, L. Jiménez, V. Lubes, G. Lubes, Coord. Chem. Rev. 372 (2018) 117–140.

[4] T. Mistri, R. Bhowmick, A. Katarkar, K. Chaudhuri, M. Ali, A novel three-input monomolecular logic circuit on a rhodamine inspired bio-compatible bi-compartmental molecular platform, J. Lumin. 185 (2017) 228–235.

[5] M. Sohrabi, M. Amirnasr, H. Farrokhpour, S. Meghdadi, A single chemosensor with combined ionophore/fluorophore moieties acting as a fluorescent "Off-On" Zn²⁺ sensor and a colorimetric sensor for Cu²⁺: Experimental, logic gate behavior and TD-DFT calculations, Sens. Actuators B 250 (2017) 647–658.

[6] N.V. Ghule, R.S. Bhosale, A.L. Puyad, S.V. Bhosale, S.V. Bhosale, Naphthalenediimide amphiphile based colorimetric probe forrecognition of Cu²⁺ and Fe³⁺ ions, Sens. Actuators B 227 (2016) 17–23.

[7] R. Rani, K. Paul, V. Luxami, An NBD-based two-in-one Cu²⁺/Ni²⁺ chemosensor with differential charge transfer processes, New J. Chem. 40 (2016) 2418-2422.

[8] Y.R. Bhorge, T.L. Chou, Y.Z. Chen, Y.P. Yen, New coumarin-based dual chromogenic probe: Naked eye detection of copper and silver ions, Sens. Actuators B 220 (2015) 1139–1144.

[9] M. Li, X.J. Jiang, H.H. Wu, H.L. Lu, H.Y. Li, H. Xu, S.Q. Zang, T.C.W. Mak, A dual functional probe for "turnon" fluorescence response of Pb²⁺ and colorimetric detection of Cu²⁺ based on a rhodamine derivative in aqueous media, Dalton Trans. 44 (2015) 17326–17334.

[10] S.G. Dogaheh, H. Khanmohammadi, E. C. Sañudo, Selective detection of Cu²⁺ and Co²⁺ in aqueous media: Asymmetric chemosensors, crystal structure and spectroscopic studies, Spectrochim. Acta Part A 179 (2017) 32–41.
[11] S.Z. Pu, H.C. Ding, G. Liu, C.H. Zheng, H.Y. Xu, Multiaddressing fluorescence switch based on a new photochromic diarylethene with a triazole-linked rhodamine B unit, J. Phys. Chem. C 118 (2014) 7010-7017.

[12] S.Z. Qu, C.H. Zheng, G.M. Liao, C.B. Fan, G. Liu, S.Z. Pu, A fluorescent chemosensor for Sn²⁺ and Cu²⁺ based on a carbazole-containing diarylethene, RSC Adv. 7 (2017) 9833–9839.

[13] S.Y. Lee, K.H. Bok, J. A. Kim, S. Y. Kim, C. Kim, Simultaneous detection of Cu²⁺ and Cr³⁺ by a simple Schiffbase colorimetric chemosensor bearing NBD (7-nitrobenzo-2-oxa-1,3-diazolyl) and julolidine moieties, Tetrahedron 72 (2016) 5563-5570.

[14] J. Jeong, B. A. Rao, Y.A. Son, Dual sensing performance of a rhodamine-derived scaffold for thedetermination of Cu²⁺ and Ce⁴⁺ in aqueous media, Sens. Actuators B 220 (2015) 1254–1265.

[15] F.J. Huo, J. Su, Y.Q. Sun, C.X. Yin, H.B. Tong, Z.X. Nie, A rhodamine-based dual chemosensor for the visual detection of copper and the ratiometric fluorescent detection of vanadium, Dyes Pigm. 86 (2010) 50-55.

[16] G. T. Selvan, S. Poomalai, S. Ramasamy, P. M. Selvakumar, I. V. M. V. Enoch, S. G. Lanas and A. Melchior, Differential metal ion sensing by an antipyrine derivative in aqueous and β -cyclodextrin media: Selectivity tuning by β -cyclodextrin, Anal. Chem. 2018, 90, 13607-13615.

[17] C. Varadaraju, G. Tamilselvan, I. V. M. V. Enoch, V. Srinivasadesikan, S.-L. Lee and P. M. Selvakumar, The first highly selective turn "ON" fluorescent sensor for vanadyl (VO²⁺) ions: DFT studies and molecular logic gate behavior, *New J. Chem.*, 2018, 42, 3833-3839.

[18] M.M. Bordbar, H. Khajehsharifi, A. Solhjoo, PC-ANN assisted to the determination of Vanadium (IV) ion using an optical sensor based on immobilization of Eriochorome Cyanine R on a triacetylcellulose film, Spectrochim. Acta Part A 151 (2015) 225–231.

[19] M.S. Qureshi, A.R.b.M. Yusoff, A. Shah, A. Nafady, Sirajuddin, A new sensitive electrochemical method for the determination of vanadium(IV) and vanadium(V) in Benfield sample, Talanta 132 (2015) 541-547.

[20] N.J. Turro, Modern molecular photochemistry, Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1978.

[21] R. Debashis, C. Arijit, G. Rina, Perimidine based selective colorimetric andfluorescent turn-off chemosensor of aqueous Cu²⁺: studies on its antioxidant property along with its interaction with calf thymus-DNA, RSC Adv. 7 (2017) 40563-40570.

[22] A.A.M. Belal, M.A. Zayed, M. El-Desawy, Sh.M.A.H. Rakha, Structure investigation of three hydrazones Schiff's bases by spectroscopic, thermal and molecular orbital calculations and

their biological activities, Spectrochim. Acta Part A 138 (2015) 49-57.

[23] Y. Xiang, A.J. Tong, P.Y. Jin, Y. Ju, New fluorescent rhodamine hydrazone chemosensor for Cu(II) with high selectivity and sensitivity, Org. Lett. 8 (2006) 2863–2866.

[24] H.L. Chen, B.J. Zhou, R.L. Ye, J. Zhu, X.F. Bao, Synthesis and evaluation of a new fluorescein and rhodamine B-based chemosensor for highly sensitive and selective detection of cysteine over other amino acids and its application in living cell imaging, Sens. Actuators B 251 (2017) 481–489.

[25] X.F. Yang, M.L. Zhao, G. Wang, A rhodamine-based fluorescent probe selective for bisulfite anion in aqueous ethanol media, Sens. Actuators B 152 (2011) 8–13.