Supporting Information

Highly efficient green and red electroluminescence with extremely low efficiencyroll-offbasedoniridium(III)complexescontainingbis(diphenylphorothioyl)amide ancillary ligand

Xiao-Feng Ma,^{‡a} Jing-Cheng Xia,^{‡a} Zhi-Ping Yan,^a Xu-Feng Luo,^a Zheng-Guang Wu,^{*a} You-Xuan Zheng^{*a,b} and Wen-Wei Zhang^{*a}

^a State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China, *E-mail: wuzhengguang_zy@163.com, yxzheng@nju.edu.cn, wwzhang@nju.edu.cn

^b Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China

[‡]Ma and Xia contributed equally to this work.

General information

¹H NMR spectra were measured on a Bruker AM 400 spectrometer. The high resolution electrospray ionization mass spectra (HR ESI-MS) were recorded on an Bruker MTQ III q-TOF. TG measurements were carried out on a TG/DSC_STA449F3 analyzer (METTLER). UV-vis absorption and photoluminescence spectra were measured on a Shimadzu UV-2550 and a Hitachi F-4600 spectrophotometer at room temperature, respectively. Cyclic voltammetry measurements were conducted on a chi600e electrochemical workstation using Fc+/Fc as the internal standard and scan rate of 0.1 V s⁻¹. The luminescence quantum efficiencies were calculated by comparison of the emission intensities (integrated areas) of a standard sample (*fac*-Ir(ppy)₃) and the unknown sample.¹ The decay lifetimes were measured with a HORIBA Scientific 3-D fluorescence spectrometer.

Synthesis of cyclometalated ligands.

2-Bromopyrimidine (24)mmol) 4-chloroquinazoline (24)mmol), 4or (trifluoromethyl)phenyl boronic acid (20 mmol), Na₂CO₃ (60 mmol), and Pd(PPh₃)₄ (0.40 mmol) were dissolved in tetrahydrofuran/water (3:1, v/v; 40 mL). The solution was refluxed for 24 h and extracted twice with CH₂Cl₂ at room temperature. The combined organic solution was concentrated and purified by column chromatography to give 2-(4-(trifluoromethyl)phenyl)pyrimidine %) 4-(4-(tfpmd; vield: 75 and (trifluoromethyl)phenyl)quinazoline (tfpqz; yield: 70 %), respectively.

Synthesis of ancillary ligand.

A solution of chlorodiphenylphosphine (18.4 mmol) and hexamethyldisilazane (9.23 mmol) in toluene (30 mL) was refluxed overnight, after which the intermediate product was purified by rapid column chromatography. The intermediate product was then dissolved in toluene (30 mL) with S₈ (2.3 mmol) and refluxed overnight giving the bis(diphenylphorothioyl)amide (stpip) crude. The mixture was purified by recrystallized from CH_2Cl_2 (50 mL) and dissolved in methanol. After the addition of potassium hydroxide in methanol (0.74 M, 5 mL), the solution was stirred and concentrated to give the desired bis(diphenylphorothioyl)amide potassium salt (3.70 mmol, 40% yield). ¹H NMR (400 MHz, CD₃OD) δ 7.95-8.01 (m, 8H), 7.22-7.29 (m, 12H). ³¹P NMR (162 MHz, CD₃OD) δ 37.56(2P). MS(ESI): m/z calcd for C₂₄H₂₀P₂S₂N⁻[M]⁻: 448.02, found 448.17.

X-ray crystallography

X-ray crystallographic measurements of the single crystals were carried out on a Bruker SMART CCD diffractometer (Bruker Daltonic Inc.) using monochromated Mo K α radiation ($\lambda = 0.71073$ Å) at room temperature. Cell parameters were retrieved using SMART software and refined using SAINT² program in order to reduce the highly redundant data sets. Data were collected using a narrow-frame method with scan width of 0.30° in ω and an exposure time of 5 s per frame. Absorption corrections were applied using SADABS³ supplied by Bruker. The structures were solved by Patterson methods and refined by full-matrix leastsquares on F^2 using the program SHELXS-2014.⁴ The positions of metal atoms and their first coordination spheres were located from direct-methods E-maps, other non-hydrogen atoms were found in alternating difference Fourier syntheses and least-squares refinement cycles and uring the final cycles refined anisotropically. Hydrogen atoms were placed in calculated position and refined as riding atoms with a uniform value of U_{iso} .

OLEDs fabrication and measurement

All OLEDs were fabricated on the pre-patterned ITO-coated glass substrate with a sheet resistance of 15 Ω / sq. The deposition rate for organic compounds (TAPC (di-[4-(N,N-ditolyl-amino)phenyl]cyclohexane), TCTA (4,4',4''-tri(9-carbazoyl)triphenylamine), 2,6DCzPPy (2,6-bis(3-(carbazol-9-yl)phenyl)pyridine), TmPyPB (1,3,5-*tri*(m-pyrid-3-yl-phenyl) benzene)) is 1 Å/s. The phosphor and the host were co-evaporated to form emitting layer from two separate sources. The cathode of LiF and Al were deposited with deposition rates of 0.1 and 3 Å/s, respectively. The characteristic curves of the devices were measured with a computer which controlled KEITHLEY 2400 source meter with a calibrated silicon diode in air without device encapsulation. On the basis of the uncorrected PL and EL spectra, the Commission Internationale de l'Eclairage (CIE) coordinates were calculated using a test program of the Spectra scan PR650 spectrophotometer.

Fig. S2. The ¹³C NMR spectrum of Ir(tfpmd)₂(stpip).

Fig. S4. The ¹³C NMR spectrum of Ir(tfpqz)₂(stpip).

Analysis Info

Acquisition Date 03/29/2018 14:34:25 PM

Analysis Name Method Sample Name

D:\Data\YangNan\NAN DA\ZYX\20180328\NJU-MS-180328005000001.d BDAL@DE Operator

Instrument micrOTOF-Q III 8228888.20519

tfpmd Comment

DirectInfusion_TuneLow_pos.m

Fig. S5. The mass spectrum of Ir(tfpmd)₂(stpip).

Display Report

Acquisition Date 03/29/2018 14:55:43 PM D:\Data\YangNan\NAN DA\ZYX\20180328\NJU-MS-180328009000001.d DirectInfusion_TuneLow_pos.m BDAL@DE Operator Tfqzl

Instrument micrOTOF-Q III 8228888.20519

Sample Name Comment

Method

Fig. S6. The mass spectrum of Ir(tfpqz)₂(stpip).

Fig. S7. The TGA curves of Ir(tfpmd)₂(stpip) and Ir(tfpqz)₂(stpip).

Fig. S8. The cyclic voltammogram curves of Ir(tfpmd)₂(stpip) and Ir(tfpqz)₂(stpip) in the range of 0-2V.

Fig. S9. The lifetime curves of Ir(tfpmd)2(stpip) and Ir(tfpqz)2(stpip) complexes.

Fig. S10. Luminance-voltage-current density (L–V–J) curves of devices S1, D1, S2 and D2.

	Ir(tfpmd) ₂ (stpip)	Ir(tfpqz) ₂ (stpip)
Formula	C46 H32 F6 Ir N5 P2 S2	C54 H36 F6 Ir N5 P2 S2
FW	1087.02	1187.14
T(K)	296(2)	173(2)
Wavelength (Å)	0.71073	0.71073
Crystal system	Monoclinic	Triclinic
Space group	P 21/c	P-1
<i>a</i> (Å)	11.5684(6)	20.775(3)
<i>b</i> (Å)	16.2297(9)	22.658(4)
<i>c</i> (Å)	23.9520(14)	10.1503(16)
α (deg)	90	90
β (deg)	101.5870(10)	90
γ (deg)	90	90
$V(\text{\AA}^3)$	4405.4(4)	4777.9(13)
Ζ	4	4
$ ho_{ m calcd}~(m mg/cm^3)$	1.639	1.650
μ (Mo K α) (mm ⁻¹)	3.263	3.017
F (000)	2144	2352
Reflns collected	24504	33901
Unique	7767	4215
Data/restraints/params	7767/ 180 / 615	4215 / 102 / 345
GOF on F^2	1.032	1.162
$R_I^{a}, w R_2^{b} [I > 2\sigma(I)]$	0.0278, 0.0622	0.0461, 0.1035
R_1^{a} , wR_2^{b} (all data)	0.0379, 0.0666	0.0495, 0.1051
CCDC NO	1878027	1878028

abie bi. Ci jstanographie data of in (apina/2(stpip) and in (apq2)2(stpip)	hic data of Ir(tfpmd)	tpip) and Ir(tfpqz) ₂ (stpip
--	------------------------------	---

 $R_1{}^a = \sum ||Fo| - |Fc|| / \sum Fo|. \ w R_2{}^b = [\sum w (F_o{}^2 - F_c{}^2)^2 / \sum w (F_o{}^2)]^{1/2}$

		U	•		
Selected bonds Å					
C1-C6	1.374(5)	C26-C27	1.384(7)	C40-C43	1.455(5)
C1-C2	1.385(7)	C27-C28	1.370(6)	C41-C42	1.407(5)
C1-H1	0.93	С27-Н27	0.93	C41-Ir1	2.030(4)
C2-C3	1.354(8)	C28-C29	1.390(6)	C42-H42	0.93
C2-H2	0.93	C28-H28	0.93	C43-N2	1.337(5)
C3-C4	1.329(7)	C29-C30	1.405(6)	C43-N1	1.369(4)
С3-Н3	0.93	C29-C32	1.463(6)	C44-N2	1.334(6)
C4-C5	1.379(7)	C30-C31	1.408(5)	C44-C45	1.374(6)
C4-H4	0.93	C30-Ir1	2.012(4)	C44-H44	0.93
C5-C6	1.378(6)	С31-Н31	0.93	C22-C23	1.344(9)
C5-H5	0.93	C32-N4	1.337(5)	C22-H22	0.93
C6-P2	1.812(4)	C32-N3	1.361(5)	C23-C24	1.368(7)
C7-C12	1.381(5)	C33-N4	1.324(6)	С23-Н23	0.93
C7-C8	1.392(7)	C33-C34	1.370(7)	C24-H24	0.93
С7-Н7	0.93	С33-Н33	0.93	C25-F1'	1.255(13)
C8-C9	1.358(8)	C34-C35	1.378(6)	C25-F2	1.283(11)
C8-H8	0.93	C34-H34	0.93	C25-F1	1.353(11)
C9-C10	1.344(8)	C35-N3	1.339(5)	C25-F3	1.352(10)
С9-Н9	0.93	С35-Н35	0.93	C25-F2'	1.371(13)
C10-C11	1.395(7)	C36-F5'	1.247(11)	C25-F3'	1.431(14)
C10-H10	0.93	C36-F4	1.275(10)	C25-C26	1.471(7)
C11-C12	1.381(6)	C36-F5	1.332(8)	C45-C46	1.369(6)
C11-H11	0.93	C36-F6'	1.360(13)	C45-H45	0.93
C12-P2	1.808(4)	C36-F4'	1.369(11)	C46-N1	1.342(5)
C13-C18	1.372(6)	C36-F6	1.410(9)	C46-H46	0.93
C13-C14	1.401(6)	C36-C37	1.480(7)	Ir1-N1	2.053(3)
C13-H13	0.93	C37-C38	1.386(6)	Ir1-N3	2.052(3)
C14-C15	1.361(7)	C37-C42	1.389(6)	Ir1-S1	2.4700(9)
C14-H14	0.93	C38-C39	1.376(6)	Ir1-S2	2.4762(10)
C15-C16	1.363(7)	С38-Н38	0.93	N5-P1	1.582(3)
C15-H15	0.93	C39-C40	1.396(5)	N5-P2	1.588(3)
C16-C17	1.376(5)	С39-Н39	0.93	P1-S1	2.0058(13)
C26-C31	1.374(6)	C40-C41	1.389(5)	P2-S2	2.0173(14)
C1-C6	1.374(5)	C26-C27	1.384(7)	C40-C43	1.455(5)
C1-C2	1.385(7)	C27-C28	1.370(6)	C41-C42	1.407(5)
C1-H1	0.93	С27-Н27	0.93	C41-Ir1	2.030(4)
Selected angles°					
C6-C1-C2	120.6(5)	C29-C30-Ir1	114.8(3)	C14-C13-H13	119.8
C6-C1-H1	119.7	C31-C30-Ir1	128.2(3)	C15-C14-C13	119.2(5)

Table S2a The selected bond lengths and angels of Ir(tfpmd)₂(stpip).

C2-C1-H1	119.7	C26-C31-C30 120.7(4)		C15-C14-H14	120.4
C3-C2-C1	121.1(5)	C26-C31-H31	119.6	C13-C14-H14	120.4
С3-С2-Н2	119.4	C30-C31-H31	119.6	C14-C15-C16	120.9(4)
C1-C2-H2	119.4	N4-C32-N3	124.6(4)	C14-C15-H15	119.6
C4-C3-C2	118.7(5)	N4-C32-C29	120.9(4)	C16-C15-H15	119.6
С4-С3-Н3	120.6	N3-C32-C29	114.5(3)	C15-C16-C17	119.7(4)
С2-С3-Н3	120.6	N4-C33-C34	124.0(4)	C15-C16-H16	120.1
C3-C4-C5	121.7(6)	N4-C33-H33	118	C17-C16-H16	120.1
С3-С4-Н4	119.2	С34-С33-Н33	118	C18-C17-C16	121.0(4)
С5-С4-Н4	119.2	C33-C34-C35	117.0(4)	C18-C17-H17	119.5
C6-C5-C4	120.9(5)	C33-C34-H34	121.5	C16-C17-H17	119.5
C6-C5-H5	119.6	C35-C34-H34	121.5	C13-C18-C17	118.8(4)
C4-C5-H5	119.6	N3-C35-C34	120.9(4)	C13-C18-P1	120.4(3)
C1-C6-C5	117.0(4)	N3-C35-H35	119.5	C17-C18-P1	120.8(3)
C1-C6-P2	122.5(3)	С34-С35-Н35	119.5	C20-C19-C24	118.9(4)
C5-C6-P2	120.4(3)	F4-C36-F5	109.8(7)	C20-C19-P1	120.6(3)
C12-C7-C8	119.9(5)	F5'-C36-F6'	109.0(9)	C24-C19-P1	120.4(4)
С12-С7-Н7	120.1	F5'-C36-F4'	106.0(8)	C19-C20-C21	120.2(4)
С8-С7-Н7	120.1	F6'-C36-F4'	100.2(8)	С19-С20-Н20	119.9
C9-C8-C7	119.8(5)	F4-C36-F6	103.3(7)	С21-С20-Н20	119.9
С9-С8-Н8	120.1	F5-C36-F6	99.4(6)	C22-C21-C20	118.6(6)
С7-С8-Н8	120.1	F5'-C36-C37	116.0(6)	C22-C21-H21	120.7
C10-C9-C8	121.5(5)	F4-C36-C37	116.3(6)	C20-C21-H21	120.7
С10-С9-Н9	119.2	F5-C36-C37	115.4(6)	C23-C22-C21	121.4(5)
С8-С9-Н9	119.2	F6'-C36-C37	114.5(6)	С23-С22-Н22	119.3
C9-C10-C11	119.5(6)	F4'-C36-C37	109.7(6)	C21-C22-H22	119.3
С9-С10-Н10	120.2	F6-C36-C37	110.6(5)	C22-C23-C24	120.5(5)
С11-С10-Н10	120.2	C38-C37-C42	121.5(4)	С22-С23-Н23	119.8
C12-C11-C10	120.4(5)	C38-C37-C36	119.1(4)	С24-С23-Н23	119.8
C12-C11-H11	119.8	C42-C37-C36	119.4(4)	C23-C24-C19	120.4(5)
C10-C11-H11	119.8	C39-C38-C37	119.0(4)	C23-C24-H24	119.8
C11-C12-C7	118.9(4)	C39-C38-H38	120.5	C19-C24-H24	119.8
C11-C12-P2	119.0(3)	С37-С38-Н38	120.5	C41-C40-C39	122.5(4)
C7-C12-P2	122.1(3)	C38-C39-C40	119.7(4)	C41-C40-C43	115.5(3)
C18-C13-C14	120.5(4)	С38-С39-Н39	120.2	C39-C40-C43	122.0(4)
C18-C13-H13	119.8	С40-С39-Н39	120.2	C40-C41-C42	117.0(3)
C40-C41-Ir1	114.6(3)	C30-Ir1-S2	172.41(11)	C29-C30-C31	116.6(4)
C42-C41-Ir1	128.3(3)	C41-Ir1-S2	85.87(11)	N3-Ir1-S2	92.77(9)

C37-C42-C41	120.3(4)	N1-Ir1-S2	90.29(9)	S1-Ir1-S2	102.51(3)
C37-C42-H42	119.8	F2-C25-F1	104.0(8)	C46-N1-C43	117.2(3)
C41-C42-H42	119.8	F2-C25-F3	105.1(9)	C46-N1-Ir1	127.7(2)
N2-C43-N1	123.5(4)	F1-C25-F3	104.1(7)	C43-N1-Ir1	115.1(2)
N2-C43-C40	121.7(3)	F1'-C25-F2'	110.4(10)	C44-N2-C43	117.3(4)
N1-C43-C40	114.7(3)	F1'-C25-F3'	107.4(10)	C35-N3-C32	117.5(3)
N2-C44-C45	122.8(4)	F2'-C25-F3'	98.2(9)	C35-N3-Ir1	127.0(3)
N2-C44-H44	118.6	F1'-C25-C26	117.3(8)	C32-N3-Ir1	115.4(2)
C45-C44-H44	118.6	F2-C25-C26	115.5(6)	C33-N4-C32	115.9(4)
C46-C45-C44	117.1(4)	F1-C25-C26	113.5(7)	P1-N5-P2	133.8(2)
C46-C45-H45	121.4	F3-C25-C26	113.5(6)	N5-P1-C18	106.79(19)
C44-C45-H45	121.4	F2'-C25-C26	110.8(7)	N5-P1-C19	110.29(19)
N1-C46-C45	121.9(4)	F3'-C25-C26	111.1(6)	C18-P1-C19	104.81(16)
N1-C46-H46	119	C31-C26-C27	121.5(4)	N5-P1-S1	119.41(13)
C45-C46-H46	119	C31-C26-C25	120.0(5)	C18-P1-S1	106.00(13)
C30-Ir1-C41	91.68(15)	C27-C26-C25	118.5(5)	C19-P1-S1	108.49(14)
C30-Ir1-N1	96.36(14)	C28-C27-C26	119.3(4)	N5-P2-C12	106.51(18)
C41-Ir1-N1	80.01(13)	С28-С27-Н27	120.4	N5-P2-C6	108.60(18)
C30-Ir1-N3	80.24(14)	C26-C27-H27	120.4	C12-P2-C6	104.15(19)
C41-Ir1-N3	94.27(13)	C27-C28-C29	120.0(4)	N5-P2-S2	120.00(14)
N1-Ir1-N3	173.31(12)	С27-С28-Н28	120	C12-P2-S2	107.80(15)
C30-Ir1-S1	80.89(10)	C29-C28-H28	120	C6-P2-S2	108.64(14)
C41-Ir1-S1	168.95(11)	C28-C29-C30	121.9(4)	P1-S1-Ir1	108.37(5)
N1-Ir1-S1	92.63(8)	C28-C29-C32	123.3(4)	P2-S2-Ir1	111.20(5)
N3-Ir1-S1	92.51(8)	C30-C29-C32	114.8(4)		

Table S2b The selected bond lengths and angels of $Ir(tfpqz)_2(stpip)$.

Selected bonds Å					
Selected Jolids / I					
Ir(1)-C(6)	2.002(6)	C(2)-C(3)	1.383(10)	C(31)-C(32)	1.376(12)
Ir(1)-C(6)#1	2.002(6)	C(2)-C(7)	1.395(9)	C(31)-C(36)	1.395(11)
Ir(1)-N(1)#1	2.043(5)	C(3)-C(4)	1.392(9)	C(32)-C(33)	1.399(11)
Ir(1)-N(1)	2.043(5)	C(3)-H(3)	0.95	C(32)-H(32)	0.95
Ir(1)-S(1)#1	2.4875(16)	C(4)-C(5)	1.400(9)	C(33)-C(34)	1.378(18)
Ir(1)-S(1)	2.4875(16)	C(4)-H(4)	0.95	C(33)-H(33)	0.95
S(1)-P(1)	2.017(2)	C(5)-C(6)	1.432(9)	C(34)-C(35)	1.352(19)
P(1)-N(5)	1.587(4)	C(5)-C(8)	1.460(7)	C(34)-H(34)	0.95
P(1)-C(42)	1.816(7)	C(6)-C(7)	1.397(8)	C(35)-C(36)	1.382(15)

P(1)-C(31)	1.830(8)	C(7)-H(7)	0.95	C(35)-H(35)	0.95
N(1)-C(8)	1.343(7)	C(8)-C(9)	1.430(8)	C(36)-H(36)	0.95
N(1)-C(15)	1.378(8)	C(9)-C(10)	1.401(9)	C(37)-C(38)	1.379(10)
N(2)-C(15)	1.299(8)	C(9)-C(14)	1.424(9)	C(37)-C(42)	1.380(10)
N(2)-C(14)	1.359(9)	C(10)-C(11)	1.358(10)	C(37)-H(37)	0.95
N(5)-P(1)#1	1.587(4)	C(10)-H(10)	0.95	C(38)-C(39)	1.374(13)
C(1)-F(2)	1.266(9)	C(11)-C(12)	1.397(12)	C(38)-H(38)	0.95
C(1)-F(1')	1.268(15)	C(11)-H(11)	0.95	C(39)-C(40)	1.371(13)
C(1)-F(1)	1.327(9)	C(12)-C(13)	1.358(12)	C(39)-H(39)	0.95
C(1)-F(3)	1.373(9)	C(12)-H(12)	0.95	C(40)-C(41)	1.383(11)
C(1)-F(3')	1.378(14)	C(13)-C(14)	1.409(9)	C(40)-H(40)	0.95
C(1)-F(2')	1.419(14)	C(13)-H(13)	0.95	C(41)-C(42)	1.390(10)
C(1)-C(2)	1.499(9)	C(15)-H(15)	0.95	C(41)-H(41)	0.95
Selected angles°	·				
C(6)-Ir(1)-C(6)#1	91.2(3)	F(2)-C(1)-C(2)	113.4(6)	N(2)-C(14)-C(13)	118.5(6)
C(6)-Ir(1)-N(1)#1	96.8(2)	F(1')-C(1)-C(2)	121.5(9)	N(2)-C(14)-C(9)	122.0(6)
C(6)#1-Ir(1)-N(1)#1	79.5(2)	F(1)-C(1)-C(2)	111.5(6)	C(13)-C(14)-C(9)	119.4(6)
C(6)-Ir(1)-N(1)	79.5(2)	F(3)-C(1)-C(2)	112.1(6)	N(2)-C(15)-N(1)	125.5(6)
C(6)#1-Ir(1)-N(1)	96.8(2)	F(3')-C(1)-C(2)	110.7(8)	N(2)-C(15)-H(15)	117.3
N(1)#1-Ir(1)-N(1)	174.8(3)	F(2')-C(1)-C(2)	113.0(7)	N(1)-C(15)-H(15)	117.3
C(6)-Ir(1)-S(1)#1	83.76(17)	C(3)-C(2)-C(7)	121.2(6)	C(32)-C(31)-C(36)	120.9(8)
C(6)#1-Ir(1)-S(1)#1	171.10(17)	C(3)-C(2)-C(1)	119.6(6)	C(32)-C(31)-P(1)	119.5(6)
N(1)#1-Ir(1)-S(1)#1	93.75(14)	C(7)-C(2)-C(1)	119.1(6)	C(36)-C(31)-P(1)	119.4(8)
N(1)-Ir(1)-S(1)#1	89.53(15)	C(2)-C(3)-C(4)	119.6(6)	C(31)-C(32)-C(33)	118.8(9)
C(6)-Ir(1)-S(1)	171.10(17)	C(2)-C(3)-H(3)	120.2	C(31)-C(32)-H(32)	120.6
C(6)#1-Ir(1)-S(1)	83.76(17)	C(4)-C(3)-H(3)	120.2	C(33)-C(32)-H(32)	120.6
N(1)#1-Ir(1)-S(1)	89.53(15)	C(3)-C(4)-C(5)	119.8(6)	C(32)-C(33)-C(34)	120.3(12)
N(1)-Ir(1)-S(1)	93.75(14)	C(3)-C(4)-H(4)	120.1	C(32)-C(33)-H(33)	119.9
S(1)#1-Ir(1)-S(1)	102.12(8)	C(5)-C(4)-H(4)	120.1	C(34)-C(33)-H(33)	119.9
P(1)-S(1)-Ir(1)	109.61(8)	C(4)-C(5)-C(6)	121.1(5)	C(35)-C(34)-C(33)	119.9(10)
N(5)-P(1)-C(42)	107.8(3)	C(4)-C(5)-C(8)	124.5(6)	C(35)-C(34)-H(34)	120
N(5)-P(1)-C(31)	110.6(3)	C(6)-C(5)-C(8)	113.9(5)	C(33)-C(34)-H(34)	120
C(42)-P(1)-C(31)	104.2(3)	C(7)-C(6)-C(5)	117.1(6)	C(34)-C(35)-C(36)	121.7(12)
N(5)-P(1)-S(1)	119.4(3)	C(7)-C(6)-Ir(1)	128.3(5)	C(34)-C(35)-H(35)	119.1
C(42)-P(1)-S(1)	105.8(2)	C(5)-C(6)-Ir(1)	114.6(4)	C(36)-C(35)-H(35)	119.1
C(31)-P(1)-S(1)	107.9(3)	C(6)-C(7)-C(2)	121.0(6)	C(31)-C(36)-C(35)	118.4(12)
C(8)-N(1)-C(15)	118.8(5)	C(6)-C(7)-H(7)	119.5	C(31)-C(36)-H(36)	120.8
C(8)-N(1)-Ir(1)	116.1(4)	C(2)-C(7)-H(7)	119.5	C(35)-C(36)-H(36)	120.8
C(15)-N(1)-Ir(1)	125.1(4)	N(1)-C(8)-C(9)	118.6(5)	C(38)-C(37)-C(42)	120.8(8)
C(15)-N(2)-C(14)	117.0(5)	N(1)-C(8)-C(5)	113.6(5)	C(38)-C(37)-H(37)	119.6
P(1)#1-N(5)-P(1)	134.1(6)	C(9)-C(8)-C(5)	127.8(5)	C(42)-C(37)-H(37)	119.6
F(2)-C(1)-F(1')	125.0(10)	C(10)-C(9)-C(14)	118.1(6)	C(37)-C(38)-C(39)	120.2(8)
F(2)-C(1)-F(1)	112.3(7)	C(10)-C(9)-C(8)	125.5(6)	C(37)-C(38)-H(38)	119.9

F(1')-C(1)-F(1)	50.1(9)	C(14)-C(9)-C(8)	116.3(6)	C(39)-C(38)-H(38)	119.9
F(2)-C(1)-F(3)	106.8(7)	C(11)-C(10)-C(9)	120.5(7)	C(40)-C(39)-C(38)	119.9(8)
F(1')-C(1)-F(3)	50.0(9)	C(11)-C(10)-H(10)	119.7	C(40)-C(39)-H(39)	120.1
F(1)-C(1)-F(3)	99.9(6)	C(9)-C(10)-H(10)	119.7	C(38)-C(39)-H(39)	120.1
F(2)-C(1)-F(3')	43.5(7)	C(12)-C(11)-C(10)	121.5(8)	C(39)-C(40)-C(41)	120.0(8)
F(1')-C(1)-F(3')	108.9(10)	C(12)-C(11)-H(11)	119.3	C(39)-C(40)-H(40)	120
F(1)-C(1)-F(3')	137.5(9)	C(10)-C(11)-H(11)	119.3	C(41)-C(40)-H(40)	120
F(3)-C(1)-F(3')	68.1(8)	C(11)-C(12)-C(13)	119.7(7)	C(40)-C(41)-C(42)	120.7(8)
F(2)-C(1)-F(2')	53.1(7)	C(11)-C(12)-H(12)	120.2	C(40)-C(41)-H(41)	119.7
F(1')-C(1)-F(2')	104.3(10)	C(13)-C(12)-H(12)	120.2	C(42)-C(41)-H(41)	119.7
F(1)-C(1)-F(2')	63.9(8)	C(12)-C(13)-C(14)	120.4(7)	C(37)-C(42)-C(41)	118.3(7)
F(3)-C(1)-F(2')	134.9(8)	С(12)-С(13)-Н(13)	119.8	C(37)-C(42)-P(1)	122.6(5)
F(3')-C(1)-F(2')	95.0(9)	С(14)-С(13)-Н(13)	119.8	C(41)-C(42)-P(1)	119.1(6)

Table S3 Data of theoretical calculation of orbital energy level and electron cloud distribution

Complex	Orbital	Energy/ eV	$E_{\text{gap}}/\ eV$	Composition (%)		
				Ir	Main ligands	Ancillary ligands
Ir(tfpmd) ₂ (stpip)	НОМО	-5.74	3.74	49.24	33.26	24.24
	LUMO	-2.00		3.33	82.93	17.32
Ir(tfpqz)2(stpip)	HOMO	-5.79	3.24	46.56	35.96	17.48
	LUMO	-2.55		4.19	86.16	9.65

References

1 (a) D. P. Rillema, D. G. Taghdiri, D. S. Jones, C. D. Keller, L. A. Worl, T. J. Meyer and H. A. Levy, Inorg. Chem., 1987, 26,

578; (b) K. A. King, P. J. Spellane and R. J. Watts, J. Am. Chem. Soc., 1985, 25, 1431.

2 SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.

3 G. M. Sheldrick, SADABS An empirical absorption correction program, Bruker Analytical X-ray Systems, Madison, WI, 1996.

4 G. M. Sheldrick, SHELXTL-2014, Universität of Göttingen, Göttingen, Germany, 2014.