## **Electronic Supplementary Information**

# Bright solid-state red-emissive BODIPYs: facile synthesis and their highcontrast mechanochromic property

Chong Duan,<sup>a,†</sup> Yibin Zhou,<sup>b,†</sup> Guo-Gang Shan,<sup>d</sup> Yuncong Chen,<sup>d</sup> Weijun Zhao,<sup>d</sup>

Dandan Yuan,<sup>e</sup> Lintao Zeng,<sup>a,\*</sup> Xiaobo Huang,<sup>b,\*</sup> and Guangle Niu<sup>c,d,\*</sup>

<sup>a</sup> School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384,

P. R. China. E-mail: zlt1981@126.com (L. Zeng)

<sup>b</sup> College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China. E-mail: xiaobhuang@wzu.edu.cn (X. Huang)

<sup>c</sup> Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: niugl@ust.hk (G. Niu)

<sup>d</sup> Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China

<sup>e</sup> School of Chemistry and Chemical Engineering, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing 210023, P. R. China

<sup>†</sup> These authors contributed equally to this work.

## **Table of Contents**

| 1. | Materials and Methods | -S3  |
|----|-----------------------|------|
| 2. | NMR spectra           | S6   |
| 3. | HRMS spectra          | -S10 |
| 4. | Photophysical data    | -S12 |
| 5. | Crystallographic data | -S15 |
| 6. | Mechanochromism data  | S17  |

#### **Materials and Methods**

#### General

<sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were recorded on a Bruker AV-400 spectrometer in deuterated chloroform (CDCl<sub>3</sub>) with tetramethylsilane (TMS) as an internal standard. High-resolution mass spectra were recorded by a HP-1100 LC-MS spectrometer and were reported in units of mass to charge (m/z). Fluorescence and UV-vis absorption spectra were measured with a Hitachi FL-4500 fluorometer and a Hitachi UV-3310 spectrometer, respectively. Solid-state fluorescence quantum yield was determined by a FluoroMax-4 (Horiba Jobin Yvon) fluorometer with an integrated sphere. Powder XRD patterns were recorded on a Bruker D8 Advance X-ray diffractometer. Single-crystal X-ray diffraction measurements were performed on a Bruker-Nonius Smart Apex CCD diffractometer with graphite monochromated Mo Ka radiation. Dynamic light scattering (DLS) data were obtained at room temperature using a ZEN3690 Dynamic Light Scattering detector (Malvern, UK). Scanning electron microscope (SEM) images were taken on a Zeiss Merlin Compact High Resolution Field Emission Scanning Electron Microscope. 2,4-Dimethylpyrrole, acetyl chloride, various benzaldehyde derivatives, tetrachloro-p-benzoquinone (p-chloranil), BF<sub>3</sub>•OEt<sub>2</sub>, NEt<sub>3</sub>, and CF<sub>3</sub>COOH were purchased from commercial suppliers (Sigma-Aldrich and TCI) and used as received.

#### Synthesis of BODIPYs with different substituents

#### General procedure for various aryl-substituted BODIPYs

Phenylaldehyde derivative (compound **1a**, **1b** and **1c**) (5 mmol) was dissolved in 20 mL of dry  $CH_2Cl_2$  in a round bottom flask, and then 2,4-dimethylpyrrole (1.28 mL, 12.5 mmol) and two drops of  $CF_3COOH$  were added. The reaction mixture was stirred at room temperature for 3 h in  $N_2$ 

atmosphere. After complete consumption of compound 1 monitored by TLC, *p*-chloranil (1.23 g, 5 mmol) was added to the reaction mixture. An hour later, 4 mL of NEt<sub>3</sub> and 5 mL of BF<sub>3</sub>·OEt<sub>2</sub> were added, and the mixture was stirred at room temperature for another 1 h. When the reaction was completed, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography with AcOEt/petroleum ether (1/50, v/v) to give the corresponding BODIPYs. The characterization data for various aryl-substituted BODIPYs are listed as follows:

PhMe<sub>3</sub>-BODIPY. Red solid (1.48 g, 80.8% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 6.94 (s, 2H), 5.96 (s, 2H), 2.56 (s, 6H), 2.33 (s, 3H), 2.09 (s, 6H), 1.38 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)
δ (ppm): 155.20, 142.42, 141.79, 138.68, 135.03, 131.24, 130.73, 129.11, 120.89, 21.35, 19.64, 14.77, 13.54. HRMS (EI): m/z calcd for [C<sub>22</sub>H<sub>26</sub>BF<sub>2</sub>N<sub>2</sub>]<sup>+</sup> 367.2179 ([M+H]<sup>+</sup>), found 367.2160.

**PhMe-BODIPY**. Red solid (1.22 g, 70.9% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.38-7.28 (m, 3H), 7.16-7.14 (d, *J* = 8.4 Hz, 1H), 5.97 (s, 2H), 2.56 (s, 6H), 2.20 (s, 3H), 1.36 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm): 155.55, 142.89, 141.57, 135.58, 134.67, 131.12, 130.78, 129.30, 128.07, 126.95, 121.20, 19.35, 14.73, 13.83. HRMS (EI): m/z calcd for [C<sub>20</sub>H<sub>22</sub>BF<sub>2</sub>N<sub>2</sub>]<sup>+</sup> 339.1839 ([M+H]<sup>+</sup>), found 339.1836.

**Ph-BODIPY**. Red solid (1.31 g, 80.1% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ (ppm): 7.49-7.47 (m, 3H), 7.29-7.26 (m, 2H), 5.98 (s, 2H), 2.56 (s, 6H), 1.37 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ (ppm): 155.57, 143.29, 141.87, 135.14, 131.57, 129.26, 129.07, 128.08, 121.33, 14.73, 14.47. HRMS (EI): m/z calcd for [C<sub>19</sub>H<sub>20</sub>BF<sub>2</sub>N<sub>2</sub>]<sup>+</sup> 325.1709 ([M+H]<sup>+</sup>), found 325.1696.

#### Synthesis of Me-BODIPY

To a solution of 2,4-dimethylpyrrole (1.08 mL, 10.5 mmol) in dry CH<sub>2</sub>Cl<sub>2</sub> (20 mL) was dropwise added acetyl chloride (1.74 mL, 24.54 mmol) at room temperature over 30 min. After acetyl chloride

(1.74 mL, 24.54 mmol) was added, the reaction solution was heated to reflux for 1 h. Then, it was cooled down to room temperature, and n-hexane (100 mL) was added. The solvents were removed by a rotary evaporator, and the residue was dissolved in dry CH<sub>2</sub>Cl<sub>2</sub> (20 mL). Then, 4 mL of NEt<sub>3</sub> and 5 mL of BF<sub>3</sub>•OEt<sub>2</sub> were added, and the resulting mixture was stirred at room temperature for 1 h. After the reaction was completed, the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography with AcOEt/petroleum ether (1/50, v/v) to give the product in red solid (1.32 g, 20.5% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 6.05 (s, 2H), 2.58 (s, 3H), 2.52 (s, 6H), 2.41 (s, 6H). <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm): 153.76, 141.55, 141.12, 132.21, 121.39, 17.42, 16.50, 14.54. HRMS (EI): m/z calcd for [C<sub>14</sub>H<sub>18</sub>BF<sub>2</sub>N<sub>2</sub>]<sup>+</sup> 263.1562 ([M+H]<sup>+</sup>), found 263.1543.

## NMR spectra



Fig. S1 <sup>1</sup>H NMR spectrum of PhMe<sub>3</sub>-BODIPY in CDCl<sub>3</sub>.



Fig. S2 <sup>1</sup>H NMR spectrum of PhMe-BODIPY in CDCl<sub>3</sub>.



Fig. S3 <sup>1</sup>H NMR spectrum of Ph-BODIPY in CDCl<sub>3</sub>.



Fig. S4 <sup>1</sup>H NMR spectrum of Me-BODIPY in CDCl<sub>3</sub>.





Fig. S6 <sup>13</sup>C NMR spectrum of PhMe-BODIPY in CDCl<sub>3</sub>



Fig. S7 <sup>13</sup>C NMR spectrum of Ph-BODIPY in CDCl<sub>3</sub>



Fig. S8 <sup>13</sup>C NMR spectrum of Me-BODIPY in CDCl<sub>3</sub>

## **HRMS** spectra



Fig. S9 HRMS spectrum of PhMe<sub>3</sub>-BODIPY.



Fig. S10 HRMS spectrum of PhMe-BODIPY.







Fig. S12 HRMS spectrum of Me-BODIPY.

### **Photophysical data**



Fig. S13 Normalized UV-vis absorption spectra of PhMe<sub>3</sub>-BODIPY, PhMe-BODIPY, Ph-BODIPY and Me-BODIPY in THF (10  $\mu$ M).



**Fig. S14** Spatial orbital distributions of HOMOs and LUMOs of **PhMe<sub>3</sub>-BODIPY**, **PhMe-BODIPY**, **Ph-BODIPY**, and **Me-BODIPY** calculated at the B3LYP/6-31G level of theory.



**Fig. S15** Absorption and fluorescence spectra of **PhMe<sub>3</sub>-BODIPY** (a, b), **PhMe-BODIPY** (c, d), **Ph-BODIPY** (e, f), **Me-BODIPY** (g, h) in different solvents (n-Hexane, Toluene, DCM, Chloroform, THF, Ethanol, DMF, Methanol and DMSO).



**Fig. S16** (a) Fluorescence and (b) absorption spectra of **PhMe-BODIPY** (20  $\mu$ M) in THF/water mixtures with different water fractions ( $f_w$ ). (c) Fluorescence and (d) absorption spectra of **Ph-BODIPY** (20  $\mu$ M) in THF/water mixtures with different water fractions ( $f_w$ ). (e) Fluorescence and (f) absorption spectra of **Me-BODIPY** (20  $\mu$ M) in THF/water mixtures with different water fractions ( $f_w$ ).

| f <sub>w</sub><br>Compound | 0% | 20% | 90%      | 99%      |
|----------------------------|----|-----|----------|----------|
| PhMe <sub>3</sub> -BODIPY  | /  | /   | 119.3 nm | 135.8 nm |
| PhMe-BODIPY                | /  | /   | /        | 133.4 nm |
| Ph-BODIPY                  | /  | /   | /        | 361.4 nm |
| Me-BODIPY                  | /  | /   | 403.9 nm | 372.1 nm |

**Table S1**. Hydrated diameter data of **PhMe<sub>3</sub>-BODIPY**, **PhMe-BODIPY**, **Ph-BODIPY** and **Me-BODIPY** measured by dynamic light scattering (DLS) in THF with different water fraction ( $f_w$ ).

## Crystallographic data

|                                         | PhMe <sub>3</sub> -BODIPY PhMe-BODIPY |                       | Ph-BODIPY             | Me-BODIPY             |  |
|-----------------------------------------|---------------------------------------|-----------------------|-----------------------|-----------------------|--|
| CCDC                                    | 1858004                               | 1858005               | 1858006               | 1858007               |  |
| Empirical formula                       | $C_{22}H_{25}BF_2N_2$                 | $C_{20}H_{21}BF_2N_2$ | $C_{19}H_{19}BF_2N_2$ | $C_{14}H_{17}BF_2N_2$ |  |
| Formula weight                          | 366.25                                | 338.20                | 324.17                | 262.10                |  |
| Temperature (K)                         | 296(2)                                | 296(2)                | 296(2)                | 296(2)                |  |
| Crystal system                          | Orthorhombic                          | Orthorhombic          | Orthorhombic          | Orthorhombic          |  |
| Space group                             | P212121                               | $P2_{1}2_{1}2_{1}$    | Pbca                  | Pnma                  |  |
| Ζ                                       | 4                                     | 12                    | 8                     | 4                     |  |
| D <sub>calcd</sub> [Mg/m <sup>3</sup> ] | 1.178                                 | 1.205                 | 1.280                 | 1.327                 |  |
| F (000)                                 | 776                                   | 2136                  | 1360                  | 552                   |  |
| $\theta$ range [°]                      | 2.584-26.000                          | 1.548-24.999          | 2.455-25.996          | 3.101-25.999          |  |
| $R_1[I>2\sigma(I)]$                     | 0.0388                                | 0.1362                | 0.0455                | 0.0407                |  |
| $wR_2$ [I>2 $\sigma$ (I)]               | 0.0896                                | 0.3491                | 0.1189                | 0.0999                |  |
| <i>a</i> [Å]                            | 7.8705(3)                             | 14.031(3)             | 13.0734(4)            | 11.3643(6)            |  |
| <i>b</i> [Å]                            | 13.5120(6)                            | 15.207(3)             | 12.6281(3)            | 7.1999(3)             |  |
| <i>c</i> [Å]                            | 19.4137(10)                           | 26.212(6)             | 20.3826(5)            | 16.0342(7)            |  |
| α [deg]                                 | 90                                    | 90                    | 90                    | 90                    |  |
| $\beta$ [deg]                           | 90                                    | 90                    | 90                    | 90                    |  |
| γ [deg]                                 | 90                                    | 90                    | 90                    | 90                    |  |
| V[Å <sup>3</sup> ]                      | 2064.57(16)                           | 5593(2)               | 3365.01(15)           | 1311.95(11)           |  |
| GOF                                     | 1.056                                 | 1.315                 | 1.055                 | 1.041                 |  |
| R(int)                                  | 0.0408                                | 0.1179                | 0.0470                | 0.0306                |  |
| No. of reflens collected                | 20361                                 | 54950                 | 32696                 | 6975                  |  |
| No. of unique reflens                   | 4056                                  | 9827                  | 3296                  | 1391                  |  |
| $R_1$ (all data)                        | 0.0513                                | 0.1945                | 0.0623                | 0.0528                |  |
| $wR_2$ (all data)                       | 0.0983                                | 0.3920                | 0.1327                | 0.1091                |  |

**Table S2** Crystal data and details of collection and refinement for BODIPYs.



**Fig. S17** Intermolecular interactions in crystals of (a) **PhMe<sub>3</sub>-BODIPY**, (b) **PhMe-BODIPY**, and (c) **Ph-BODIPY**.



Fig. S18 Intermolecular interactions and molecular packing in the crystal structure of Me-BODIPY.

### Mechanochromism data



**Fig. S19** SEM images of **PhMe<sub>3</sub>-BODIPY** (a-c), **PhMe-BODIPY** (d-f), **Ph-BODIPY** (g-i), and **Me-BODIPY** (j and k) before and after strong grinding. (a), (d), (g), and (j): original sample; (b), (e), and (h): gently ground sample; (c), (f), and (i): strongly ground sample including large amounts of KBr; (k): strongly ground sample.

| Compound                  | Туре            | $	au_1{}^a$ | $	au_2{}^a$ | $A_1{}^b$ | $A_2{}^b$ | $<_{T}>^{c}$ | $arPsi_{ m F}$ | $k_{ m f}$          | k <sub>nr</sub>     |
|---------------------------|-----------------|-------------|-------------|-----------|-----------|--------------|----------------|---------------------|---------------------|
|                           |                 | (ns)        | (ns)        |           |           | (ns)         | (%)            | (s <sup>-1</sup> )  | (s <sup>-1</sup> )  |
|                           | Single crystals | 0.60        | 3.42        | 0.05      | 0.95      | 3.28         | 32.2           | 9.8×10 <sup>7</sup> | 2.1×10 <sup>8</sup> |
| PhMe <sub>3</sub> -BODIPY | Gently Ground   | 0.62        | 2.26        | 0.48      | 0.52      | 1.33         | 43.5           | 3.3×10 <sup>8</sup> | 4.2×10 <sup>8</sup> |
|                           | Strongly Ground | 0.06        | 2.58        | 0.82      | 0.18      | 0.47         | 26.8           | 5.7×10 <sup>8</sup> | 1.6×10 <sup>9</sup> |
|                           | Single crystals | 0.05        | 2.27        | 0.48      | 0.52      | 1.19         | 9.2            | 7.7×10 <sup>7</sup> | 7.6×10 <sup>8</sup> |
| PhMe-BODIPY               | Gently Ground   | 0.14        | 1.29        | 0.63      | 0.37      | 0.51         | 24.7           | $4.8 \times 10^{8}$ | 1.5×10 <sup>9</sup> |
|                           | Strongly Ground | 0.14        | 2.30        | 0.90      | 0.10      | 0.24         | 22.9           | 9.5×10 <sup>8</sup> | 3.2×10 <sup>9</sup> |
|                           | Single crystals | 0.61        | 3.32        | 0.01      | 0.99      | 3.29         | 13.0           | 4.0×10 <sup>7</sup> | 2.6×10 <sup>8</sup> |
| Ph-BODIPY                 | Gently Ground   | 0.72        | 2.08        | 0.66      | 0.34      | 0.87         | 46.4           | 5.3×10 <sup>8</sup> | $6.2 \times 10^{8}$ |
|                           | Strongly Ground | 0.22        | 1.77        | 0.91      | 0.09      | 0.36         | 20.2           | 5.6×10 <sup>8</sup> | 2.2×10 <sup>9</sup> |
| Me-BODIPY                 | Single crystals | 0.99        | 2.84        | 0.22      | 0.78      | 2.39         | 5.2            | 2.2×10 <sup>7</sup> | 4.0×10 <sup>8</sup> |
|                           | Ground          | 1.12        | 2.96        | 0.39      | 0.61      | 2.07         | 6.0            | 2.9×10 <sup>7</sup> | 4.5×10 <sup>8</sup> |

Table S3. Decay parameters and fluorescence quantum yields of BODIPYs at different solid states.

<sup>*a*</sup> Fluorescence lifetime. <sup>*b*</sup> Fractional contribution. <sup>*c*</sup> Weighted mean lifetime.