Supporting Information

Observation of Dirac state in borophene hetero-bilayer by Cr intercalation

Xiaojing Yao,^a Ding Yi^b and Xiuyun Zhang*^c

^aCollege of Physics and Information Engineering, Hebei Advanced Thin Films Laboratory, Hebei Normal University, Shijiaz huang 050024, China

^bCenter for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea. ^cCollege of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China

Fig. S1 Top and side view of optimized structures of bilayer (α_1,β_1) -, (α_1,β) - and (β,β_1) - boron sheets.

Fig. S2 (a-d) Cr@BHB_(α 1, β) after AIMD simulation at temperature of 300K, 600K, 900K and 1200K, respectively; (e) Cr@BHB_(α 1, β 1) after AIMD simulation at temperature of 1200K; (f) Cr@BHB_(β , β 1) after AIMD simulation at temperature of 1200K.

Fig. S3 Charge density differences of Cr@BHB_($\alpha 1,\beta$). Yellow and blue colors indicate charge accumulation and depletion, respectively. The isosurface value was set at 0.01 a.u.

Fig. S4 Spin-orbit splitting of the Dirac point for $Cr@BHB_{(\alpha 1,\beta)}$.

Fig. S5 Band structures of the Cr@BHB_(α 1, β) under uniaxial tensile strains along *x* direction from 1% to 8%, Dirac state can be preserved up to 8%.

Fig. S6 Band structures of the Cr@BHB_($\alpha 1,\beta$) under biaxial tensile strains along *xy* direction from 1% to 8%, Dirac state can be preserved up to 8%.

Fig. S7 The partial density of states for $Cr@BHB_{(\alpha 1,\beta)}$ under stretch and compressive strain of 3%.

	Strain intensity(%)							
Δe	1	2	3	4	5	6	7	8
x	0.74	0.73	0.73	0.73	0.73	0.73	0.73	0.72
У	0.73	0.74	0.75	0.74	0.76	0.78	0.79	0.79
xy	0.73	0.73	0.75	0.75	0.75	0.74	0.75	0.75
	Strain intensity(%)							
Δe	-1	-2	-3	-4	-5	-6	-7	-8
x	0.84	0.85	0.86	0.86	0.86	0.87	0.87	0.88
У	0.82	0.82	0.82	0.81	0.77	0.77	0.76	0.76
xy	0.84	0.84	0.85	0.86	0.86	0.86	0.84	0.86

Table S1. The transferred electrons (Δe , e) from Cr atom to BHB for Cr@BHB_($\alpha 1,\beta$) under biaxial strains and uniaxial strains along *x* and *y* directions calculated by bader charge.

Fig. S8 Band structures of the Cr@BHB_($\alpha 1,\beta$) under uniaxial compressive strains along *x* direction from -1% to -8%.

Fig. S9 Band structures of the Cr@BHB_($\alpha 1,\beta$) under biaxial compressive strains from -1% to - 8%.

Fig. S10 Band structures of the Cr@BHB_($\alpha 1,\beta$) under uniaxial compressive strains along *y* direction from -1% to -8%.

Fig. S11 Band structures of the $Cr@BHB_{(\alpha 1,\beta 1)}$ under different strains.

Fig. S12 Band structures of the Cr@BHB_{(β,β_1)} under different strains.

Fig. S13 Band gaps for semiconducting systems of $Cr@BHB_{(\alpha 1,\beta 1)}$ and $Cr@BHB_{(\beta,\beta 1)}$ under strains with different intensities.