Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information (ESI) for Towards Red–Light *o*-Carborane Derivatives with both Aggregation Induced Emission and Thermally Activated Delayed Fluorescence Combining Quantum Chemistry Calculation with Molecular Dynamics Simulation

Ying-Chen Duan,^a Ying Gao,^a Yun Geng,^{*a} Yong Wu,^b

Guo-Gang Shan,*a Liang Zhao,a Min Zhang a and Zhong-Min Su*a, c, d

^aInstitute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China E-mail: <u>gengy575@nenu.edu.cn</u>; <u>shangg187@nenu.edu.cn</u>; <u>zmsu@nenu.edu.cn</u>

^bSchool of Pharmaceutical Sciences, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, 130117, P. R. China

^cSchool of Chemistry & Environmental Engineering, Changchun University of Science and Technology, Changchun, 130022, P. R. China

^dJilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Changchun, 130022, P. R. China

Table S1 Selected bond lengths (Å) and dihedral angles (°) of **1** at S₀ state calculated by different functionals compared with the experimental values of the X-ray diffraction crystal structure, together with their differences (Δ).

		5	, 0						
	Expt.	B3LY	CAM-	PBE0	TPSS	$\Delta(B3LYP)$	Δ (CAM-	Δ (PBE0	Δ (TPSSH
		Р	B3LYP		Н)	B3LYP)))
C1-C2	1.713			1.705					
	6	1.7599	1.7022	6	1.7383	0.0463	-0.0114	-0.0080	0.0247
C1-C3	1.505			1.502					
	3	1.5071	1.5074	2	1.5067	0.0018	0.0021	-0.0030	0.0015
C2-C5	1.503			1.501					
	7	1.5060	1.5057	1	1.5043	0.0023	0.0020	-0.0025	0.0007
С2-С1-С3-С	105.3	97.80	105.83	106.4	106.02	-7.54	0.49	1.08	0.68
4	4			2					
С1-С2-С5-С	125.3	100.21	103.39	106.9	103.11	-25.17	-21.98	-18.46	-22.27
6	8			1					

Fig. S1 The plots of energy versus simulation time and volume versus simulation time in NPT process as well as energy versus simulation time and pressure versus simulation time in NVT process for **1**.

Fig. S2 Position change of molecules in the 1/THF solution model before (a) and after (b) MD simulation.

Table S2 Overlap integrals of the norms of HOMO and LUMO for 1-6 at their T_1 states, respectively.

	1	2	3	4	5	6
Overlap integral	0.065	0.370	0.060	0.091	0.057	0.077

Fig. S3 The calculated vertical excitation energies $E_{VA}(S_1)/eV$ of $S_0 \rightarrow S_1$ transition versus HF% for **1**.

Fig. S4 Structural changes from S_0 (in grey) to S_1 (in cyan) states for single 3-6 molecules in isolated state and cluster in film.

Fig. S5 Calculated frontier molecular orbital diagrams of 3-6.

Fig. S6 The calculated vertical excitation energies $E_{VA}(S_1)/eV$ of $S_0 \rightarrow S_1$ transition versus HF% for **2-6**.

Table S3 Vertical excitation energies $E(S_1)/eV$ of $S_0 \rightarrow S_1$ transition for **3-6** calculated by different functionals with various HF percent, coupled with the values calculated by OHF[$E_{VA}(S_1,OHF)$] and the corresponding $\Delta E_{ST}/eV[q$ denotes the CT amount in the excitation process and $E_{VA}(T_1,BLYP)$ is the vertical excitation energy of $S_0 \rightarrow T_1$ transition].

		3	4	5	6
Functional	HF(100%)				
BLYP	5	1.224	1.132	0.696	0.631
MPWLYP1M	10	1.442	1.325	0.902	0.818
TPSSh	15	1.735	1.590	1.206	1.092
B3LYP*	20	1.877	1.714	1.337	1.219
B3LYP	25	2.105	1.922	1.567	1.438
PBE0	31	2.338	2.128	1.811	1.655
MPW1B95	33.33	2.578	2.348	2.045	1.880
PBE38	37.5	2.909	2.652	2.392	2.208
BMK	42	3.028	2.737	2.495	2.284
M062X	56	3.499	3.178	2.881	2.766
42q		39.56	37.84	39.44	38.56
$E_{VA}(S_1, OHF)$		2.940	2.640	2.430	2.220
$E_{VA}(T_1, BLYP)$		1.221	1.123	0.681	0.606
ΔE_{ST}		0.009	0.023	0.052	0.090

Table S4 Calculated C1–C2, C1–C3 and C2–C5 bond lengths (Å), C2–C1–C3–C4 dihedral angles and C1–C2–C5–C6 dihedral angles (°) of 1 before and after replacing the carborane moiety with phenyl moiety in S_0 state at the PBE0/6-31G* level.

	1	1-Ph
C1-C2	1.7056	1.4135
C1-C3	1.5022	1.4839
C2-C5	1.5011	1.4736
C2-C1-C3-C4	106.42	132.42
C1-C2-C5-C6	106.91	129.65

1	C2-C1-C3-C4																	
C1-C2-C5-C6	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
10	11.295	5.722	2.970	1.660	1.027	0.703	0.530	0.459	0.480	0.606	0.886	1.431	2.561	5.008	10.11 1			
20	5.705	2.940	1.579	0.906	0.576	0.413	0.338	0.328	0.387	0.543	0.878	1.582	3.144	6.832				11.772
30	2.951	1.573	0.847	0.483	0.316	0.242	0.212	0.217	0.270	0.411	0.735	1.472	3.287	9.046			9.690	5.889
40	1.645	0.900	0.483	0.282	0.195	0.159	0.144	0.146	0.174	0.273	0.530	1.146	2.636	5.973	8.322	6.416	4.733	2.987
50	1.016	0.573	0.319	0.199	0.150	0.129	0.117	0.109	0.117	0.174	0.335	0.718	1.485	2.540	3.096	2.956	2.391	1.656
60	0.694	0.413	0.250	0.172	0.139	0.123	0.111	0.096	0.086	0.115	0.201	0.390	0.716	1.111	1.407	1.491	1.335	1.028
70	0.520	0.340	0.227	0.164	0.132	0.115	0.099	0.079	0.065	0.075	0.116	0.204	0.345	0.530	0.718	0.835	0.828	0.697
80	0.439	0.330	0.238	0.166	0.121	0.097	0.080	0.057	0.037	0.042	0.064	0.108	0.177	0.277	0.404	0.511	0.556	0.512
90	0.469	0.419	0.305	0.191	0.121	0.084	0.059	0.036	0.015	0.013	0.029	0.059	0.099	0.159	0.246	0.338	0.406	0.427
100	0.714	0.680	0.454	0.279	0.169	0.104	0.064	0.031	0.007	0.000	0.013	0.037	0.065	0.106	0.173	0.261	0.359	0.457
110	1.296	1.050	0.756	0.527	0.328	0.184	0.101	0.050	0.019	0.008	0.019	0.038	0.061	0.094	0.155	0.256	0.412	0.656
120	1.851	1.658	1.484	1.150	0.714	0.373	0.183	0.091	0.046	0.027	0.034	0.052	0.075	0.111	0.183	0.327	0.623	1.195
130	2.699	3.182	3.330	2.666	1.490	0.703	0.329	0.164	0.089	0.056	0.058	0.075	0.103	0.153	0.262	0.520	1.108	1.974
140	5.069	6.928	9.197	6.000	2.531	1.095	0.514	0.266	0.155	0.103	0.097	0.118	0.160	0.247	0.444	0.908	1.788	2.868
150	10.237			8.192	3.046	1.376	0.693	0.388	0.240	0.171	0.162	0.197	0.278	0.445	0.805	1.543	2.842	5.185
160				6.265	2.885	1.449	0.805	0.492	0.333	0.263	0.271	0.351	0.516	0.837	1.476	2.762	5.349	10.249
170			9.412	4.586	2.316	1.288	0.795	0.536	0.406	0.370	0.435	0.602	0.914	1.515	2.746	5.333	10.496	
180		11.34	5.677	2.877	1.598	0.990	0.670	0.499	0.435	0.470	0.620	0.918	1.479	2.632	5.112	10.156		

Table S5 Relative energy (eV) of **1** when the C2–C1–C3–C4 dihedral angle and the C1–C2–C5–C6 dihedral angle (°) respectively change between 10° and 180° (the lowest energy point is set as the zero of energy, where the dihedral angles are both 100°).

Table S6 Relative energy (eV) of **1-Ph** when the C2–C1–C3–C4 dihedral angle and the C1–C2–C5–C6 dihedral angle (°) respectively change

		,		0,	1							C		,				
1-Ph									C2-C1	-C3-C4	4							
C1-C2-C5-C6	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180
10	21.371	11.151	5.720	3.083	1.811	1.171	0.847	0.701	0.685	0.788	1.030	1.494	2.414	4.371	8.578	16.459		
20	11.183	5.701	3.038	1.686	1.002	0.661	0.516	0.488	0.556	0.726	1.054	1.704	3.098	6.145	12.701			20.140
30	5.745	3.050	1.625	0.861	0.485	0.321	0.278	0.308	0.398	0.574	0.915	1.656	3.367	7.855			17.063	10.800
40	3.115	1.709	0.872	0.418	0.213	0.142	0.143	0.183	0.259	0.397	0.691	1.388	3.169	8.790			8.512	5.450
50	1.843	1.025	0.498	0.219	0.103	0.075	0.088	0.122	0.174	0.262	0.467	0.979	2.198	4.566	6.065	5.282	4.251	2.912
60	1.199	0.684	0.338	0.152	0.079	0.068	0.084	0.110	0.142	0.187	0.297	0.575	1.142	1.922	2.445	2.540	2.267	1.733
70	0.864	0.533	0.295	0.154	0.095	0.087	0.100	0.122	0.143	0.160	0.202	0.315	0.541	0.856	1.157	1.351	1.350	1.146
80	0.706	0.507	0.331	0.200	0.132	0.114	0.122	0.139	0.152	0.156	0.162	0.192	0.274	0.423	0.619	0.805	0.889	0.830
90	0.695	0.592	0.433	0.278	0.181	0.143	0.138	0.148	0.157	0.152	0.142	0.137	0.161	0.236	0.369	0.523	0.637	0.686
100	0.848	0.804	0.618	0.416	0.270	0.189	0.156	0.152	0.150	0.139	0.120	0.102	0.102	0.140	0.231	0.364	0.532	0.725
110	1.212	1.154	0.966	0.722	0.487	0.305	0.200	0.159	0.140	0.119	0.093	0.067	0.054	0.073	0.144	0.314	0.656	1.018
120	1.669	1.792	1.737	1.466	1.038	0.604	0.321	0.192	0.135	0.099	0.066	0.034	0.016	0.030	0.139	0.492	1.065	1.287
130	2.509	3.227	3.542	3.373	2.347	1.204	0.560	0.281	0.161	0.100	0.055	0.017	0.000	0.047	0.294	0.846	1.211	1.592
140	4.509	6.408	8.274		4.869	2.009	0.884	0.436	0.241	0.143	0.082	0.042	0.047	0.167	0.521	0.941	1.492	2.504
150	8.870	13.147			6.264	2.504	1.180	0.632	0.379	0.246	0.171	0.143	0.194	0.385	0.745	1.351	2.490	4.528
160	16.952				5.329	2.559	1.359	0.815	0.542	0.398	0.335	0.351	0.479	0.773	1.345	2.457	4.587	8.768

between 10° and 180° (the lowest energy point is set as the zero of energy, where the dihedral angles are both 130°).

170		16.914	8.485	4.224	2.245	1.339	0.896	0.664	0.559	0.555	0.665	0.935	1.462	2.498	4.589	8.793	17.031
180	19.890		5.346	2.848	1.694	1.127	0.835	0.700	0.685	0.789	1.041	1.536	2.501	4.519	8.749	16.992	

Fig. S7 The simulated absorption spectra of 1 and 2 in THF media by using TD-DFT/PBE38 method.

Fig. S8 The simulated absorption spectra of 3-6 in THF media by using TD-DFT/PBE38 method.