Supporting information

metal oxide	μ_{lin}	Carrier concentration (cm ⁻³)		resistivity
	$(cm^2 V^{-1} s^{-1})$	Hall measurements	calculated	$(\Omega \cdot cm)$
IGZO (2:1:1)	2.2	/	7.2×10 ¹⁴	4.6×10 ⁶
In ₂ O ₃	/	8.1×10 ¹⁵	2.3×10 ¹⁶	63.6

Table S1. Mobility, carrier concentration and resistivity of IGZO and In₂O₃ films

Figure S1. Transfer curve of conductive In₂O₃ TFT after annealing at 150° C for 1 hour

Figure S2. Transfer curves of In₂O₃ TFTs at different annealing temperatures. The insets show the

device architecture employed.

metal oxide	$\mu_{lin}(cm^2V^{-1}s^{-1})$	Von (V)	I _{on/off}	SS (Vdec. ⁻¹)	
In ₂ O ₃ (250°C)	3.1	-4.9	2.3×10 ⁵	0.95	
In ₂ O ₃ (300°C)	7.6	-11.8	2.1×10 ⁶	1.0	
$In_2O_3(350^{\circ}C)$	Conductive				
$In_2O_3(400^{\circ}C)$	Conductive				

Table S2. Performance of the In₂O₃ TFTs at different annealing temperatures

Figure S3. (a) and (b) are optical photographs and surface profiles of heterojunction channel layers of Type I and Type II devices, respectively.

Figure S4. Transfer characteristics of IGZO TFT: (a) under NBS, (b) under PBS.

Figure S5 (a) UPS valence band spectrum of In_2O_3 and IGZO (2:1:1), black line is used to determine the upper edge of VB.(b) shows the ultraviolet absorption spectrum of the In_2O_3 and IGZO (2:1:1) films as a function of photon energy (eV), and the black line is used to determine the band gap.