SUPPLEMENTARY MATERIAL

Exfoliation of Borophene from Silver Substrate Assisted by

Li/Mg Atoms—A Density Functional Theory Study

Yingping Wang,^a Yuewen Mu*^a, and Si-Dian Li*^a

^a Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Institute of Molecular Science, Shanxi University, Taiyuan 030006, China. *E-mail: <u>ywmu@sxu.edu.cn</u>; <u>lisidian@sxu.edu.cn</u>.*

Figure S1. Illustration the optimization of (a) Li2 and (b) Li4 clusters on the borophene.

Figure S2. Illustration the optimization of (a) Mg₂ and (b) Mg₄ clusters on the borophene.

Figure S3. The top and side views of the charge density difference of β_{12} borophene with (a) Li and (b) Mg adatoms. The charge density difference was defined as $\Delta \rho = \rho_{tot} - \rho_{borophene} - \rho_{sub} - \rho_{adatoms}$, where ρ_{tot} , $\rho_{borophene}$, ρ_{sub} and $\rho_{adatoms}$ stand for the charge density of total system, borophene, substrate and Li/Mg adatoms, respectively.