Electronic Supporting Information Available

Efficient white polymer light-emitting diodes (WPLEDs) based on double emitting layers of PVK:Eu(III)-complex and Alq₃

Yani He, Lin Liu, Guorui Fu, Wentao Li, Xingqiang Lü, Hongshan He and Wai-Yeung Wong

Supporting information

Materials and methods

High performance liquid chromatography (HPLC)-grade MeCN was purchased from Fisher Scientific and purified over solvent columns. Other solvents were used as received from Sigma Aldrich and stored over 3 Å activated molecule sieves. The typical H₂Salen (N,N'bis(salicylidene)cyclohexane-1,2-diamine) Schiff-base ligand was synthesized from the condensation reaction¹ of an equimolar mixture of *cis*- and *trans*-1,2-diaminocyclohexane and salicylaldehyde from the literature. Other chemicals including materials PVK (Poly(*N*vinylcarbazole); $M_w \approx 90000$ g/mol), Alq₃ and BCP et al for device fabrication, were commercial products of reagent grade and were used without further purification.

Elemental analyses were performed on a Perkin-Elmer 240C elemental analyzer. Fourier Transform Infrared (FT-IR) spectra were recorded on a Nicolet Nagna-IR 550 spectrophotometer in the region 4000-400 cm⁻¹ using KBr pellets. ¹H NMR spectra were recorded on a JEOL EX 400 spectrometer with SiMe₄ as internal standard in DMSO- d_6 at room temperature. ESI-MS was performed on a Finnigan LCQ^{DECA} XP HPLC-MS_n mass spectrometer with a mass to charge (*m*/*z*) range of 4000 using a standard electro-spray ion source and MeCN as the solvent. Electronic absorption spectra in the UV/Visible region were recorded with a Cary 300 UV spectrophotometer. Visible emission and excitation spectra were collected by a combined fluorescence lifetime and steady-state spectrometer (FLS-980, Edinburgh) with a 450 W Xe lamp. Excited-state decay times were obtained by the same spectrometer but with a μ F900 Xe lamp. The luminescent absolute overall quantum yield (Φ_{em} or Φ_{ln}^{l}) was determined by the same spectrometer using a 450 W Xe lamp and an integrating sphere. Thermal properties were characterized using thermogravimetric (TG) analyses on a NETZSCH TG 209 instrument under flowing nitrogen at a heating rate of 10 °C/min.

X-ray crystallography

X-ray quality crystals of complex $[Zn(Salen)(\mu-OAc)Tb(DBM)_2)]$ (**3**) were mounted onto thin glass fibers. Intensity data were collected on a Bruker SMART CCD diffractometer ((Mo-K α radiation and $\lambda = 0.71073$ Å) in Φ and ω scan modes. Structures were solved by Direct methods followed by difference Fourier syntheses, and refined by full-matrix least-squares techniques against F² using SHELXTL² All other non-hydrogen atoms were refined with anisotropic thermal parameters. Absorption corrections were applied using SADABS.³ All hydrogen atoms were placed in calculated positions and refined isotropically using a riding model. Crystallographic data and selected bond lengths and angles are presented in Tables 1-2S, respectively. CCDC reference number 1561008 for complex **3**.

Cyclic voltammetry (CV) measurement

Cyclic voltammetry (CV) measurement was performed on a computer-controlled EG&G Potentiostat/Galvanostat model 283 at room temperature with a conventional threeelectrode cell using using a an Ag/AgNO₃ (0.1 M) reference electrode, Pt carbon working electrode of 2 mm in diameter, and a platinum wire counter electrode. CV of the sample was performed in nitrogen-saturated dichloromethane containing 0.1 M Bu₄NPF₆ as supporting electrolyte. The cyclic voltammogram was measured at a scan rate of 100 mV·s⁻¹. The highest occupied molecular orbit (HOMO) and the lowest unoccupied molecular orbit (LUMO) energy levels of complex **3** are calculated according to the following equations,⁴ $E_{HOMO} = -(E_{OXD} - E_{OXD, ferrocene}) - 4.8 \text{ eV}, E_{LUMO} = E_{HOMO} + E_g \text{ eV}, and where E_g is the energy band$ gap estimated from the low-energy edge of the absorption spectra from the samples. TheHOMO and LUMO energy levels for the other used materials were obtained from theliterature.⁵

PLEDs' fabrication and characterization

The **PLED-I** and **PLEDs-II-A-C** were fabricated on ITO coated glass substrates with a sheet of 20 Ω per square. Patterned ITO coated glass substrates were washed with acetone, detergent, distilled water and isopropanol in an ultrasonic bath. After being exposed under oxygen plasma for 20 min, PEDOT:PSS from water solution was spin-coated at 2000 rpm on the substrate and followed by drying in a vacuum oven at 140 °C for 20 min, giving a film of 40 nm. The chlorobenzene solution (at a concentration of 10 mg/mL) of PVK and a stipulated doping amount of complex **2** (20%, 30% or 40%; wt% *versus* PVK) as the EML1 was prepared

under N₂ atmosphere and spin-coated on the PEDOT:PSS layer with a thickness of 40 nm. Subsequently, the Alq₃ layer (20 nm) as the EML2 and the following BCP layer (20 or 10 nm) were thermally deposited onto the EML1. Finally, a thin layer of LiF (1 nm) followed by 100 nm thickness Al capping layer was deposited onto the substrate under vacuum of 5×10^{-6} Pa. The typical active area of the four devices is 9 mm². Current density (*J*)-voltage (*V*)-luminance (*L*) was collected using a Keithley 2400 source meter equipped with a calibrated silicon photodiode. The electroluminescent spectra were measured by a PR655 spectrometer. The eternal quantum efficiency (η_{EQE}) values were determined by a Si photodiode with calibration in an integration sphere (IS080, Labsphere).

References

- 1 X. Q. Lü, W. Y. Bi, W. L. Chai, J. R. Song, J. X. Meng, W. Y. Wong, W. K. Wong and R. A. Jones, *New J. Chem.*, 2008, **32**, 127-131.
- 2 G. M. Sheldrick, *SHELXL-97, Program for Crystal Structure Refinement*, University of Göttingen, Göttingen, Germany, 1997.
- 3 G. M. Sheldrick, SADABS, University of Göttingen, Göttingen, Germany, 1996.
- 4 H. Y. Chen, C. T. Chen and C. T. Chen, *Macromolecules*, 2010, **43**, 3613-3623.
- 5 E. Zysman-Colman, S. S. Ghosh, G. Xie, S. Varghese, M. Chowdhury, N. Sharma, D. B. Cordes, A. M. Z. Slawin and I. D. W. Samuel, ACS Appl. Mater. Interfaces, 2016, 8, 9247-9253.

compound	3
formula	$C_{52}H_{45}N_2O_8ZnTb$
fw	1050.19
cryst syst	Monoclinic
space group	P2(1)/n
<i>a</i> , Å	14.288(5)
<i>b</i> , Å	13.854(5)
<i>c,</i> Å	28.391(10)
α , deg	90
<i>θ</i> , deg	103.983(9)
γ, deg	90
<i>V</i> , Å ³	5453(3)
Ζ	4
<i>ρ</i> , g⋅cm ⁻³	1.279
size, mm	$0.22 \times 0.21 \times 0.19$
μ(Mo-Kα), mm⁻¹	1.774
data/restraints/parameters	9611/725/577
quality-of-fit indicator	0.891
final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.111$
	$wR_2 = 0.2437$
R indices (all data)	$R_1 = 0.3187$
	$wR_2 = 0.3314$

Table 1S Crystallographic data and structure refinement for complex 3.

3		
Zn(1)-N(1)	2.060(20)	Zn(1)-N(2) 2.030(20)
Zn(1)-O(1)	2.020(16)	Zn(1)-O(2) 2.034(14)
Zn(1)-O(7)	1.994(17)	
Tb(1)-O(1)	2.318(14)	Tb(1)-O(2) 2.256(15)
Tb(1)-O(3)	2.201(16)	Tb(1)-O(4) 2.237(15)
Tb(1)-O(5)	2.228(15)	Tb(1)-O(6) 2.243(14)
Tb(1)-O(8)	2.317(16)	Zn(1)…Tb(1) 3.277(3)
N(1)-Zn(1)-N	(2) 80.8(10)	N(1)-Zn(1)-O(1) 88.8(9)
N(1)-Zn(1)-C	(2) 151.9(8)	N(1)-Zn(1)-O(7) 110.6(8)
O(1)-Tb(1)-C	0(2) 72.6(5)	O(1)-Tb(1)-O(8) 75.5(5)
O(3)-Tb(1)-C	0(4) 75.9(6)	O(5)-Tb(1)-O(6) 73.4(5)

Table 2S Selected bond lengths (Å) and bond angles (°) in complex 3.

Scheme 1S. Synthesis scheme of the complex precursor [Zn(Salen)(MeCN)] and its complexes 1-4.

Figure 1S. TGA curves of complex 2 and PVK.

Figure 2S. Normalized UV-visible absorption spectra of the free ligand HDBM, the complex precursor [Zn(Salen)(MeCN)] and their complexes **2-4** in MeCN solution (10⁻⁵ M) and photo-luminescent spectrum of PVK in film.

Figure 3S. Schematic energy level diagram and possible energy transfer for the complexes 2-

3 and the EML1 of PVK:complex **2**.

Figure 4S. Normalized visible emission spectra of PVK:complex **2** (20, 30 or 40 wt% of the doping content of complex **2** in PVK) in the solid state at RT.

