Supporting Information for

Less Toxic Zinc(II), Diorganotin(IV), Gallium(III) and Cadmium(II) Complexes Derived from 2-benzoylpyridine N,N-dimethylthiosemicarbazone: Synthesis, Crystal Structures, Cytotoxicity and Investigations of Mechanisms of Action

Yan Fang, Jie Li, Pei-Pei Han, Qiu-Xia Han* and Ming-Xue Li*

Henan Key Laboratory of Polyoxometalates, Institute of Molecular and Crystal Engineering,

College of Chemistry and Chemical Engineering, Henan University E-mail address: <u>limingxue@henu.edu.cn(M.-X</u>. Li); <u>qiuxia_han@163.com(Q.-X</u> Han);

Contents

Table S1 Summary of Crystal Data and Refinement Results for Complexes 1-4.

Table S2 Selected bond lengths (Å) and angles (deg) of complexes 1-4.

Table S3 The cytotoxicity of the tested compounds against HepG2 cells and QSG7701 cells.

Table S4 Effects of 1 on intracellular ROS in HepG2 cells.

Table S5 Effect of 1 on MMP in HepG2 cells.

 Table S6 Effects of 1-induced activations of caspase-3.

Table S7 Effects of 1 on the activation of the p21 gene in HepG2 cells

Table S8 Effects of 1 on the activation of the p53 gene in HepG2 cells.

Figure S1. Structure of complex 1 with atomic numbering scheme.

Figure S2. Structure of complex 2 with atomic numbering scheme.

Figure S3. Structure of complex 3 with atomic numbering scheme.

Figure S4. Structure of complex 4 with atomic numbering scheme.

Table S1 Summary of Crystal Data and Refinement Results for Complexes 1-4.

Compound	1	2	3	4
Empirical formula	$C_{30}H_{30}N_8S_2Zn$	$C_{29}H_{28}N_4O_2SSn$	$C_{30}H_{30}GaN_9O_3S_2$	$C_{30}H_{30}CdN_8S_2$
Formula weight	632.11	615.30	698.47	679.14
Crystal size (mm)	$0.50 \times 0.41 \times 0.23$	$0.38 \times 0.25 \times 0.17$	$0.68 \times 0.23 \times 0.09$	$0.49 \times 0.34 \times 0.26$
Crystal system	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P2(1)/c	P2(1)/c	P2(1)/n	C2/c
<i>T</i> (K)	296(2)	296(2)	293(2)	296(2)
<i>a</i> (Å)	16.408(3)	17.15(2)	18.441	16.9715(10)
<i>b</i> (Å)	8.6188(15)	10.549(13)	8.936	23.6235(15)
<i>c</i> (Å)	21.365(4)	16.45(2)	21.809	15.9881(10)
V (Å) ³	2995.0(9)	2914(6)	3583.8	6249.1(7)
α (°)	90.00	90.00	90.00	90.00
β (°)	97.571(3)	101.78(3)	94.29	102.8670(10)

γ (°)	90.00	90.00	90.00	90.00
$D_c ({\rm g}~{\rm cm}^{-3})$	1.402	1.402	1.295	1.444
Z	4	4	4	8
$\mu (\mathrm{mm}^{-1})$	0.994	0.980	0.927	0.866
θ (°)	1.92-25.0	2.28-25.00	1.87-25.00	1.72-25.00
<i>F</i> (000)	1312	1248	1440	2768
hkl Range	$-19 \leq h \leq 16,$	$-20 \le h \le 19,$	$-21 \le h \le 15, -10$	$-20 \le h \le 14, -27$
	$-10 \le k \le 10, -24$	$-12 \le k \le 11,$	$\leq k \leq 10, -25 \leq l \leq$	$\leq k \leq 27, -18 \leq l$
	$\leq l \leq 25$	$-16 \le l \le 19$	25	≤18
Refl. collected	5264	5128	6302	5506
Refl. unique	4243	4093	2623	4679
R _{int}	0.0190	0.0377	0.1557	0.0234
Parameters	370	334	407	370
$R_1, wR_2 [I \ge 2\sigma (I)]$	0.0353, 0.1161	0.0297, 0.0745	0.1430, 0.2260	0.0281, 0.0708
R_1, wR_2 (all dates)	0.0474, 0.1243	0.0422, 0.0795	0.3635, 0.3933	0.0366, 0.0743
Goodness-of-fit on F^2	0.956	0.998	1.268	1.060
$\Delta \rho_{\text{max}, \text{min}}$ (e Å ⁻³)	0.521, -0.251	0.360, -0.446	2.646, -0.862	0.475, -0.311

Table S2 Selected bond lengths (Å) and angles (deg) of complexes 1–4.

1		2			3	4	
Zn1–N7	2.1332(19)	Sn1-C22	2.178(4)	Ga1–N7	1.994(8)	Cd1-N3	2.3751(19)
Zn1-N3	2.1441(19)	Sn1–C16	2.183(4)	Ga1–N3	2.053(8)	Cd1–N7	2.384(2)
Zn1–N4	2.213(2)	Sn1–O2	2.355(3)	Ga1–N4	2.111(8)	Cd1–N8	2.396(2)
Zn1–N8	2.2455(19)	Sn1-N3	2.395(3)	Ga1–N8	2.130(8)	Cd1-N4	2.420(2)
Zn1-S1	2.4331(8)	Sn1-O1	2.432(3)	Ga1-S1	2.368(3)	Cd1-S1	2.5609(7)
Zn1-S2	2.4371(8)	Sn1-N4	2.459(3)	Ga1-S2	2.372(3)	Cd1-S2	2.5616(7)
S1-C3	1.719(3)	Sn1-S1	2.612(3)	S1-C3	1.712(11)	S1-C3	1.729(3)
S2-C18	1.725(3)	S1–C3	1.762(3)	S2-C18	1.667(11)	S2-C18	1.740(3)
N2-C3	1.344(3)	N2-C3	1.347(4)	N2-C3	1.269(12)	N2-C3	1.336(3)
N2-N3	1.367(3)	N2-N3	1.376(3)	N2-N3	1.344(11)	N2-N3	1.362(2)
N3-C4	1.289(3)	N3C4	1.324(4)	N3-C4	1.294(11)	N3-C4	1.301(3)
N6-C18	1.333(3)	C22-Sn1-C16	167.67(12)	N6-C18	1.359(13)	N6-C18	1.331(3)
N6-N7	1.348(3)	C22-Sn1-O2	89.80(10)	N6–N7	1.388(11)	N6N7	1.367(2)
N7-C19	1.299(3)	C16-Sn1-O2	91.06(9)	N7-C19	1.310(13)	N7-C19	1.298(3)
N7–Zn1–N3	161.11(8)	C22-Sn1-N3	87.51(12)	N7–Ga1–N3	174.9(3)	N3-Cd1-N7	151.03(6)
N7–Zn1–N4	93.77(7)	C16–Sn1–N3	97.19(11)	N7–Ga1–N4	98.9(3)	N3-Cd1-N8	95.00(7)
N3-Zn1-N4	73.99(7)	O2-Sn1-N3	152.98(8)	N3–Ga1–N4	78.0(3)	N7-Cd1-N8	67.99(6)
N7–Zn1–N8	73.91(7)	C22-Sn1-O1	86.71(13)	N7–Ga1–N8	78.5(3)	N3-Cd1-N4	68.38(6)
N3–Zn1–N8	91.62(7)	C16–Sn1–O1	83.69(12)	N3–Ga1–N8	97.1(3)	N7-Cd1-N4	86.63(6)
N4–Zn1–N8	90.90(7)	O2-Sn1-O1	55.21(8)	N4–Ga1–N8	85.6(3)	N8-Cd1-N4	86.23(7)
N7–Zn1–S1	111.35(6)	N3-Sn1-O1	151.17(7)	N7–Ga1–S1	100.1(2)	N3-Cd1-S1	74.74(5)
N3–Zn1–S1	79.53(6)	C22-Sn1-N4	82.06(11)	N3- Ga1 - S1	82.6(2)	N7–Cd1–S1	126.85(5)

N4–Zn1–S1	153.47(5)	C16–Sn1–N4	89.04(11)	N4–Ga1–S1	159.7(3)	N8-Cd1-S1	91.77(5)
N8–Zn1–S1	88.16(6)	O2-Sn1-N4	137.58(9)	N8–Ga1–S1	91.0(2)	N4-Cd1-S1	142.71(5)
N7–Zn1–S2	79.71(5)	N3-Sn1-N4	68.53(11)	N7–Ga1–S2	81.9(2)	N3-Cd1-S2	121.22(5)
N3–Zn1–S2	113.81(6)	O1–Sn1–N4	82.70(11)	N3–Ga1–S2	102.0(2)	N7–Cd1–S2	74.43(5)
N4–Zn1–S2	89.54(6)	C22-Sn1-S1	97.14(13)	N4–Ga1–S2	90.5(3)	N8-Cd1-S2	142.10(5)
N8–Zn1–S2	153.59(5)	C16-Sn1-S1	95.11(12)	N8–Ga1–S2	159.2(2)	N4–Cd1–S2	96.49(5)
S1–Zn1–S2	102.82(3)	O2-Sn1-S1	79.78(6)	S1–Ga1–S2	99.41(12)	S1–Cd1–S2	107.28(3)
		N3-Sn1-S1	73.90(8)				
		O1-Sn1-S1	134.87(8)				
		N4-Sn1-S1	142.42(6)				

Table S3 The cytotoxicity of the tested compounds against HepG2 cells and QSG7701 cells. n = 4. Mean \pm SD.

			Tested compounds		
Hepatocellular cells	Bp44mT	1	2	3	4
HepG2	1.45 ± 0.1	6.68 ± 1.0	3.61 ± 0.15	1.7 ± 0.25	2.47 ± 0.18
QSG7701	7.3 ± 0.18	77.64 ± 10.05	9.42 ± 0.31	0.67 ± 0.069	17.05 ± 1.67

Table S4 Effects of 1 on intracellular ROS in HepG2 cells. n = 4. Mean \pm SD.

	Concentrations (µM)				
intracellular ROS	0	1	5	10	
	2307	3245	5015	6670	
Measured data	2614	2628	4891	6715	
	2689	3482	5113	6779	
	2623	3190	5518	5656	
Mean value	2558.25	3136.25	5134.25	6455	
Relative value (% of	100.0 + 0.059	122 (0 + 0 12	200 70 + 0.001	252 22 + 0.19	
control)	100.0 ± 0.058	122.60 ± 0.12	200.70 ± 0.091	252.32 ± 0.18	

Table S5 Effect of 1 on MMP in HepG2 cells, the cells were loaded with membrane-sensitive probe Rh123. n = 4. Mean \pm SD.

	Concentrations (µM)					
Rh123	0	1	5	10		
Measured data	27022	11559	14274	7491		
	24109	12280	15062	7702		
	25379	17927	8320	6129		
	28022	13454	8645	9348		
Mean value	26133	13805	11575.25	7667.5		
Relative value (% of	100.0 + 0.057	52 82 4 0.005	44.20 + 0.12	20.24 + 0.044		
control)	100.0 ± 0.057	52.83 ± 0.095	44.29 ± 0.12	29.34 ± 0.044		

	Concentrations (µM)				
caspase-3	0	1	5	10	
	2330	2998	3668	6280	
Measured data	2416	3088	3910	9693	
	2097	3211	3856	8345	
	2100	2875	3722	7628	
Mean value	2235.75	3043	3789	7986.5	
Relative activity	1.0 ± 0.063	1.36 ± 0.055	1.70 ± 0.044	3.57 ± 0.55	

Table S6 Effects of 1-induced activations of caspase-3. n = 4. Mean \pm SD.

Table S7 Effects of **1** on the activation of the p21 gene in HepG2 cells by using in vitro kinase test. n = 4. Mean \pm SD.

	Concentrations (µM)				
p21 gene	0	1	5	10	
	3106	3322	3217	5899	
Measured data	2761	3854	4581	6590	
	3116	3789	4356	6675	
	2767	3387	3442	5814	
Mean value	2937.5	3588	3899	6244.5	
Relative activity	1.0 ± 0.059	1.21 ± 0.080	1.33 ± 0.19	2.13 ± 0.13	

Table S8 Effects of **1** on the activation of the p53 gene in HepG2 cells by using in vitro kinase test. n = 4. Mean \pm SD.

	Concentrations (µM)					
p53 gene	0	1	5	10		
Measured data	3451	3561	4321	6891		
	2897	2672	2156	4781		
	3621	3156	3476	6671		
	2455	3899	2915	5253		
Mean value	3106	3322	3217	5899		
Relative activity	1.0 ± 0.15	1.07 ± 0.15	1.04 ± 0.25	1.90 ± 0.29		

Figure S1. Structure of complex 1 with atomic numbering scheme.

Figure S2. Structure of complex 2 with atomic numbering scheme.

Figure S3. Structure of complex 3 with atomic numbering scheme.

Figure S4. Structure of complex 4 with atomic numbering scheme.