Supporting Information

FI-ICP-TOFMS for quantification of biologically essential trace elements in cerebrospinal fluid - high-throughput at low sample volume

Sarah Theiner, Anna Schoeberl, Lisa Fischer, Sophie Neumayer, Stephan Hann, Gunda Koellensperger

ICP-MS/MS measurements

Measurements were performed with an Agilent 8800 ICP-MS/MS unit (Agilent Technologies, Tokyo, Japan). The ICP-MS instrument was equipped with a MicroMist nebulizer (200 μ L min⁻¹ nominal sample uptake, AHF Analysentechnik AG, Tuebingen, Germany) and a quartz cyclonic spray chamber (Elemental Scientific Inc., Omaha, USA) that was Peltier-cooled to 2 °C. The instrument was tuned on a daily basis in order to achieve maximum sensitivity, low oxide formation (¹⁴⁰Ce¹⁶O⁺/¹⁴⁰Ce⁺ <1.5%) and a doubly charged ratio of ¹⁴⁰Ce²⁺/¹⁴⁰Ce⁺ <2%. Elements were monitored in standard mode and using oxygen as reaction gas with a flow rate of 0.32 mL min⁻¹ and mass selection steps on both quadrupoles. The following isotopes with a respective integration time of 0.05 s were monitored in standard mode: ²⁵Mg, ⁴³Ca, ²⁷Al, ⁵⁶Fe, ⁶⁵Cu, ⁶⁶Zn, ¹¹¹Cd and ²⁰⁶Pb. The following isotopes with a respective integration time of 0.05 s were monitored in oxygen gas mode using mass shift modality: ²⁵Mg, ⁴¹Mg, ²⁷Al, ⁴³Ca, ⁵⁶Fe, ⁵⁶Cu, ⁶⁶Cu, ⁶⁶Zn, ⁴¹Ce, ⁴²Zn, ¹¹¹Cd, ¹²⁷Cd and ²⁰⁶Pb, ²²²Pb.

A bio-inert Agilent 1260 HPLC system (Agilent Technologies, Waldbronn, Germany) was used for flow injection measurements. The HPLC was directly connected to the nebulizer of the ICP-MS/MS instrument by a PEEK capillary tubing with an inner diameter of 0.127 mm and a length of approx. 0.8 m. The following chromatographic conditions were used: injection volume: 5 μ L; flow rate: 0.30 mL min⁻¹; isocratic elution; CH₃COONH₄ (50 mM, pH=6.8) was employed as mobile phase. The data were recorded and evaluated with the Agilent MassHunter Chromatography software package, MassHunter 4.1 Version C.01.01, 2014. Instrumental parameters of ICP-MS/MS measurements are summarized in Table S1.

	ICP-SFMS	ICP-MS/MS	ICP-TOFMS
Plasma power [W]	1250	1550	1550
Cone materials	Pt	Ni	Ni
Plasma gas flow [L min ⁻¹]	16.0	15.0	14.0
Auxiliary gas flow [L min ⁻¹]	0.80	0.80	0.80
Nebulizer gas flow [L min ⁻¹]	1.18	1.10	1.18
Masses notched	-	-	¹⁶ O ⁺ , ³⁷ Cl ⁺ , ⁴⁰ Ar ⁺

Table S1. Instrumental parameters for ICP-MS measurements.

Table S2. Multi-element quantification in serum Seronorm reference material by an open vessel acid digestion procedure with a sample intake of 50 μ L using external calibration and isotope dilution analysis followed by ICP-SFMS detection, measured in low resolution mode ($m/\Delta m$ 300) and medium resolution mode ($m/\Delta m >4500$), for n=5 independently prepared samples, respectively.

external calibration					isotope dilution analysis		
isotope	certified value [µg L ⁻¹]	concentration [µg L ⁻¹]	RSD [%]	recovery [%]	concentration [µg L ⁻¹]	RSD [%]	recovery [%]
²⁵ Mg(MR)	$1.68 \ x \ 10^4 \pm 0.34 \ x \ 10^4$	$1.72 \text{ x } 10^4 \pm 0.069 \text{ x } 10^4$	4	102	-	-	-
²⁷ Al (MR)	50 ± 25	66 ± 2.3	3	124	-	-	-
⁴³ Ca(MR)	$8.6 \ x \ 10^4 \pm 1.75 \ x \ 10^4$	$9.53 \ge 10^4 \pm 0.41 \ge 10^4$	4	110	-	-	-
⁵⁶ Fe(MR)	$1.47 \text{ x } 10^3 \pm 0.3 \text{ x } 10^3$	$1.4 \text{ x } 10^3 \pm 0.05 \text{ x } 10^3$	4	95	$1.46 \ge 10^3 \pm 0.018 \ge 10^3$	1.3	99
⁶⁵ Cu(MR)	$1.07 \text{ x } 10^3 \pm 0.22 \text{ x } 10^3$	$1.08 \text{ x } 10^3 \pm 0.023 \text{ x } 10^3$	2	102	$1.13 \text{ x } 10^3 \pm 0.016 \text{ x } 10^3$	1.4	106
⁶⁶ Zn(MR)	$1.06 \text{ x } 10^3 \pm 0.21 \text{ x } 10^3$	$1.91 \text{ x } 10^3 \pm 0.004 \text{ x } 10^3$	2	181	$1.86 \ge 10^3 \pm 0.031 \ge 10^3$	1.7	176
¹¹¹ Cd(LR)	0.13*	0.18 ± 0.008	4	128	-	-	-
²⁰⁶ Pb(LR)	0.40*	0.52 ± 0.04	7	123	-	-	-

*approximate values given in the serum Seronorm reference material certificate, no control range available

Table S3. Multi-element quantification in CSF quality control using external calibration and flow injection experiments with ICP-MS/MS detection, using either standard mode or oxygen gas mode in mass shift modality, for n=5 independently prepared samples, respectively.

	standard mode			oxygen gas mode	
isotope	concentration [µg L ⁻¹]	RSD [%]	isotope	concentration [μg L ⁻¹]	RSD [%]
²⁵ Mg	$3.96 \times 10^4 \pm 0.008 \times 10^4$	1.9	²⁵ Mg→ ⁴¹ Mg	$4.11 \ge 10^4 \pm 0.18 \ge 10^4$	0.4
²⁷ Al	24.2 ± 1.6	6.8	²⁷ Al→ ⁴³ Al	27.2 ± 5.1	19
⁴³ Ca	$7.28 \text{ x } 10^3 \pm 0.14 \text{ x } 10^3$	19	⁴⁴ Ca→ ⁶⁰ Ca	$2.82 \text{ x } 10^3 \pm 0.13 \text{ x } 10^3$	3.6
⁵⁶ Fe	164 ± 18	11	⁵⁶ Fe→ ⁷² Fe	162 ± 1	0.6
⁶⁵ Cu	30.2 ± 0.82 2.17 x 10 ³ ± 0.079 x	2.7	⁶⁵ Cu→ ⁸¹ Cu	<loq< td=""><td>-</td></loq<>	-
⁶⁶ Zn	103	3.6	⁶⁶ Zn→ ⁸² Zn	$2.12 \text{ x } 10^3 \pm 0.088 \text{ x } 10^3$	4.2
¹¹¹ Cd	< LOQ	-	111 Cd \rightarrow 127 Cd	< LOQ	-
²⁰⁶ Pb	0.44 ± 0.02	5.5	²⁰⁶ Pb→ ²²² Pb	< LOQ	-

Table S4. Multi-element quantification in serum Seronorm reference material by flow injection with a sample intake of 5 μ L using online isotope dilution analysis and ICP-TOFMS detection, for n=5 independently prepared samples.

serum Seronorm reference material				
isotope	target value [μg L ⁻¹]	concentration [µg L-1]	RSD [%]	recovery [%]
Fe	$1.47 \text{ x } 10^3 \pm 0.3 \text{ x } 10^3$	$1.51 \ge 10^3 \pm 0.057 \ge 10^3$	3.8	102
Cu	$1.07 \text{ x } 10^3 \pm 0.22 \text{ x } 10^3$	$1.07 \text{ x } 10^3 \pm 0.029 \text{ x } 10^3$	2.7	100
Zn	$1.06 \text{ x } 10^3 \pm 0.21 \text{ x } 10^3$	9.97 x $10^2 \pm 0.22$ x 10^2	2.2	94

Table S5. The precision of Fe, Cu and Zn isotope ratios is determined from blank measurements (n=6) using online isotope dilution analysis and ICP-TOFMS detection.

isotope ratio	average	stdev	RSD [%]
⁵⁶ Fe/ ⁵⁷ Fe	70.9	1.1	1.6
⁶³ Cu/ ⁶⁵ Cu	2.02	0.01	0.47
66Zn/67Zn	6.33	0.08	1.3
⁶⁴ Zn/ ⁶⁷ Zn	10.7	0.15	1.4
⁶⁸ Zn/ ⁶⁷ Zn	4.67	0.06	1.4
⁷⁰ Zn/67Zn	0.17	0.002	1.4

Equations used for online isotope dilution analysis

$$M_{x}(t) = M_{y}(t) \times \left(\frac{R_{y} - M_{b}R_{b}(t)}{M_{b}R_{b}(t) - R_{x}}\right) \times \left(\frac{h_{iy}}{h_{ix}}\right) \qquad M_{y}(t) = M_{x}(t) \times \left(\frac{R_{x} - M_{b}R_{b}(t)}{M_{b}R_{b}(t) - R_{y}}\right) \times \left(\frac{h_{ix}}{h_{iy}}\right) \qquad \text{Equation (1)}$$

Mx (t)	mass flow of the sample
My(t)	mass flow of the spike
Rx	ratio of the isotopes A/B in the sample
Ry	ratio of the isotopes A/B in the spike
Rb(t)	ratio of the isotopes A/B in the blend
hix	abundance of the spike isotope in the sample
hiy	abundance of the spike isotope in the spike