Electronic Supporting Information

Exploring the Potential of a Urea Derivative: An AIE-Luminogen and Its Interaction with Human Serum Albumin in Aqueous Medium

Senjuti Halder, Soham Samanta and Gopal Das*

Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India. Fax: + 91 361 258 2349; Tel: +91 361258 2313; E-mail: gdas@iitg.ernet.in

Table of Contents		Pages
Figure S1	¹ H-NMR spectra of L_1 in DMSO-d ₆	S-6
Figure S2	¹³ C-NMR spectra of L_1 in DMSO-d ₆	S-7
Figure S3a	Mass spectrum of L ₁	S-7
Figure S3b	Mass spectrum of L_2	S-8
Figure S4	FT-IR spectrum of L_1	S-8
Figure S5	UV-Vis changes of L_1 and L_2 in various solvents	S-9
Figure S6	UV-Vis and fluorescence spectra of L_2 in mixed solvent system	S-9
Figure S7	Frontier molecular orbital plots of L ₁	S-10
Figure S8	UV-visible spectra of L_1 in presence HSA	S-10
Figure S9	Fluorescence response of L_1 in presence of HSA in different medium	S-11
Figure S10	Fluorescence spectra of L_2 in presence of HSA and BSA	S-11
Figure S11	Fluorescence microscope images of L_1 , HSA and L_1 +HSA	S-12
Figure S12	TEM images of the L_1 in presence of HSA.	S-12
Figure S13	DLS-based particle size analysis of L_1 upon interaction with HSA	S-13
Figure S14	Spectral overlap of emission spectra of HSA and absorption spectra of L_1 and the occurrence of FRET with addition of L_1 to HSA	S-13
Figure S15	Red edge excitation shift effects	S-14
Table S1	Red edge excitation shift values	S-14
Figure S16	Fluorescence lifetime decay profiles of L_1 in absence and in presence of HSA	S-15
Table S2	Lifetime of L_1 in the absence and in presence of HSA	S-15
Figure S17	Drug binding study	S-16
Figure S18	MTT based cytotoxicity assay	S-16
Figure S19	Determination of detection limit	S-17
Table S3	Recent progress in the field of HSA sensing, a comparative study	S-17
Figure S20	Kinetic study of L_1 and L_1 +HSA	S-18
Figure S21	Detection of HSA in bio-fluidic samples using L_1	S-19
Figure S22	Detection of HSA in artificial urine sample by using L_1	S-19
Figure S23	Interactions encountered in the Docking conformation of $\mathrm{HSA}/\mathrm{L}_1$	S-20

Experimental Section

General Information and Materials: Human Serum Albumin (HSA), Bovine Serum Albumin (BSA), DNA, DNase, Lysozyme, Cysteine, Pepsin, Trypsin, Ovalbumin, β -lactoglobulin, Pancreatin and all other materials for synthesis were purchased from commercial suppliers and used without further purification. Absorption measurements were carried out on a Perkin-Elmer Lamda-750 UV-Vis Spectrophotometer using 10 mm path length quartz cuvettes in the wavelength range of 250-700 nm, while the fluorescence spectra were recorded on a Horiba Fluoromax-4 Spectrofluorometer using 10 mm path length quartz cuvettes with a slit width of 3 nm at 298 K. Mass spectrum of L₁ and L₂ were obtained using Waters Q-ToF Premier mass spectrometer. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Advance 600 MHz instrument. The chemical shifts were recorded in parts per million (ppm) on the scale. The following abbreviations are used to describe spin multiplicities in ¹H NMR spectra: s = singlet; d = doublet; t = triplet; q= quartet, m = multiplet.

Detection Limit: The detection limit was calculated on the basis of the fluorescence titration. The fluorescence emission spectrum of L_1 was measured 10 times, and the standard deviation of blank measurement was estimated (λ em = 438 nm). To measure the slope, the fluorescence emission at 438 nm was plotted as a function of the concentration of HSA from the titration experiment. The detection limit was then calculated using the following equation:

Detection limit =
$$3\sigma/k$$
 (1)

where σ is the standard deviation of blank measurement, and k is the slope between the fluorescence emission intensity versus [HSA].

Field Emission Scanning Electron Microscopy: FESEM imaging studies were conducted separately with a solution of L_1 (1 mM) and L_2 (1 Mm) by changing water fraction from 50% to 100% in CH₃CN-H₂O by drop (2 µl) cast method on glass plates covered with Al-foil using Gemini 300 FESEM (Carl Zeiss).

Fluorescence Microscopy: The samples [$L_1(10 \ \mu M$) on increasing acetonitrile fraction up to 50% in water-acetonitrile mixture] were prepared freshly by casting all preparation drops(5 μ l)

on a glass slide and were dried completely at room temperature followed by image acquisition using a fluorescence microscope (Eclipse Ti-U, Nikon, USA) with blue filter.

Transmission Electron Microscopy: The size and morphology of the L₁-aggregates on increasing acetonitrile fraction in aqueous medium and L₁ in presence of HSA in aqueous solution were determined by transmission electron microscopy (TEM) using a JEM-2100 (JEOL) microscope. The samples [L₁(2 μ M) in 50% acetonitrile/water solution) , HSA (0.15 mg/mL), HSA(0.15 mg/mL)+L₁(2 μ M) in water] were prepared freshly by casting one preparation drop (5 μ l) on carbon coated copper grids and the sample was dried completely at room temperature and images were observed under TEM.

Dynamic light scattering studies: The particle sizes of L_1 , aggregated L_1 and L_1 +HSA were measured by dynamic light scattering (DLS) experiments on Malvern Zetasizer Nano ZS instrument equipped with a 4.0 mW He–Ne laser operating at a wavelength of 633 nm. The samples and the background were measured at room temperature (25 °C). DLS experiments were carried out with optically clear solutions of L_1 (2 μ M) to observe the change in the particle size upon increasing the CH₃CN fraction. DLS studies were also carried out with an optically clear solution of L_1 (2 μ M) in water, in the presence and absence of HSA separately to determine the changes in the particle size on the interaction of L_1 with HSA. The solution was equilibrated for 60 minutes before taking the measurements.

Circular dichroism measurements: CD spectra of aqueous solutions of L_1 (0.02 μ M), only HSA (15 μ g/mL) and HSA in presence of L_1 were recorded by using a 2 mL quartz cuvette of 10 mm path length with a J-1500 (Jasco) spectropolarimeter at room temperature. Spectra were collected at 1 nm intervals and 1 nm bandwidth from 190 to 450 nm.

FRET and REES study: In case of fluorescence measurement for FRET experiment, the donor HSA was excited at 295 nm and emission spectra were recorded 310–580 nm wavelength range. For REES experiment, the Trp was excited at both 295 and 310 nm to investigate the REES effect. The value of $\Delta \lambda_{em}^{max}$ is defined as the difference of the emission maximum obtained for the excitation wavelength at 295 nm and 310 nm,

Measurement of fluorescence lifetime: Fluorescence lifetimes were measured employing the time-correlated single-photon counting (TCSPC) method using Edinburgh Instrument Life-Spec II spectrometer. The samples (L_1 and L_1 +HSA) were excited at 390 nm keeping the emission wavelength at 438 nm using a pulsed diode laser. The fluorescence decays were analyzed by the re-convolution method using the FAST software provided by Edinburgh Instruments.

Competitive Drug Displacement Study: It has been well established that serum proteins are composed of three homologous a-helical domains (I–III) and each domain contains two sub domains. The principal ligand binding sites of HSA are located in hydrophobic cavities in sub domains IIA and IIIA, which are referred to as site I and site II according to the terminology. To identify L_1 binding site on HSA, site marker competitive experiments were carried out using three site-specific drugs comprising warfarin (domain IIA), ibuprofen (domain IIIA) and salicylic acid (a site marker of subdomains IIA & IB).

2.5. Molecular Docking Study: Molecular docking was conducted to analyze the geometrically and energetically stable conformation upon binding of probe L1 to HSA. AutoDockTools-1.5.6 was used to generate a docked conformation of L₁ with HSA by employing a Genetic Algorithm (GA) and a Lamarckian Genetic Algorithm. The binding free energies and binding sites of L_1 within the active site of HSA were examined by this software. The crystal structure of HSA with four letter codes (1BM0) was retrieved from RCSB PDB (Sugio, S., Kashima, A., Mochizuki, S., Noda, M., Kobayashi, K. Protein Eng. 1999, 12, 439-446), and was subject to energy refinement, hydrogen additions and solvent removal through Swiss PDB Viewer v.4.1.0 to allow all the residues to adopt a correct and stable configuration. To define all binding sites, a grid box was generated with a spacing of 0.375 °A and dimensions of (60x60x60) points (.gpf file). The docking parameters were inserted as the number of GA runs: 25. The output is selected as Lamarckian GA (.dpf file), which was applied in AutoDockTools-1.5.6 to conduct docking simulations. Energy minimization and optimization of the probe L1 was also performed. In the end, analysis of docking result of the probe L1 was done using PyMOL viewer programs and the docking structure with the lowest binding energy calculated by AutoDockTools-1.5.6 was selected as the best binding conformation.

Density Functional Theory (DFT) Study: DFT optimizations of L_1 were carried out with the RB3LYP/ 6-31G method basis set using the Gaussian 09 program where calculated total energy is **-1148.25535936 a.u**.

Figure S1: ¹H-NMR spectra of L₁ in DMSO-d₆.

Figure S2: ¹³C-NMR spectra of L_1 in DMSO-d₆.

Figure S3a: Mass spectrum of L₁.

Figure S3b: Mass spectrum of L₂.

Figure S4: FT-IR spectrum of L_1 recorded in KBr pellet at 25°C.

Figure S5: UV-Vis changes of L_1 and L_2 (10 μ M) in various solvents at room temperature. INSET: Expanded region of the spectra in the wavelength region 325nm - 500 nm.

Figure S6: A) U-V Visible spectra of $L_2(10 \ \mu\text{M})$ in CH₃CN-H₂O with different CH₃CN fractions; B) Fluorescence spectra of $L_2(2 \ \mu\text{M})$ in CH₃CN-H₂O with different CH₃CN fractions ($\lambda_{ex} = 300 \ \text{nm}$);

Figure S7: Frontier molecular orbital plots of L_1 (ΔE = energy gap between HOMO and LUMO).

Figure S8: UV-visible spectra of $L_1(2 \mu M)$ in aqueous medium in presence HSA (150 μ g/mL).

Figure S9: Fluorescence response of L_1 (2 μ M) at 438 nm upon interaction with HSA (150 μ g/mL) in different medium

Figure S10: Fluorescence spectra of L_2 (2 μ M) in aqueous medium in presence of HSA and BSA(150 μ g/mL).

Figure S11: Fluorescence microscope images in 100% aqueous solution of (i) only L_1 (ii) only HSA (iii) L_1 in presence of HSA.

Figure S12: TEM images of the L_1 in presence of HSA in 100% aqueous solution (scale bar = 200 nm).

Figure S13: DLS-based particle size analysis; change in particle size of L_1 (2 μ M) in aqueous medium upon interaction with HSA (150 μ g/mL).

Figure S14: A) Spectral overlap of emission spectra of HSA and absorption spectra of L_1 ; B) The occurrence of FRET with addition of L_1 (2 μ M) to HSA (150 μ g/mL) in aqueous medium.

Figure S15: Red edge excitation shift effects at A) λ_{ex} 295 nm and B) λ_{ex} 310 nm.

Table S1: Red	edge excitation	shift effects at λ_{ax} 295	nm and at λ_{ex} 310 nm.
1 4010 010 1004	cage entertation		min and at rex 210 min.

	λ _{en}	and the second	
Sample	λex 295 nm	λex 310 nm	REES (nm)
L ₁	346	346	0
L ₁ +HSA (150 µg/mL)	344	349	5
L ₁ +HSA (300 µg/mL)	344	354	10

Figure S16: Fluorescence lifetime decay profiles of L_1 (2 μ M)in absence and in presence of HSA (150 μ g/mL) in aqueous medium.

Table S2: Lifetime of L₁ A) in the absence and B) in presence of HSA where $\langle \tau \rangle = a_1 \tau_1 + a_2 \tau_2$

Sample	B ₁	B ₂	a ₁	a ₂	τ1	$ au_2$	<τ>	χ^2
L ₁	0.055	0.001	0.719	0.281	0.442	6.721	2.206	0.935
L ₁ +HSA	0.008	0.004	0.198	0.801	1.528	14.290	11.749	1.233

Figure S17: Changes in the emission intensity of L_1 (2 μ M) in presence of HSA (150 μ g/mL) at 438 nm upon addition of various site specific drugs; λ_{ex} =380 nm.

Figure S18: MTT based cytotoxicity assay for (A) probe L_1 , L_1 /HSA ensemble and (B) only HSA.

Figure S19: Fluorescence intensity (at 438 nm) vs. concentration of HSA plot for determination of detection limit.

SI.	Reference	Fluorophoric	Solvent	Detection	Analytes
No.		Receptor type	system	limit	detected
1.	Analyst, 2014, 139,	Supramolecular	Tris-HCl	Not	Human Serum
	581–584	aggregates of a	buffer	Reported	Albumin
		cyanine dye		_	
4.	Chem. Commun.,	2-dicyanomethylene-	PBS (pH	2.5 mg L1	Human
	2016 , 52, 6064	3-cyano-4,5,5-	8)		albumin
	6067	trimethyl-			
		2,5-dihydrofuran			
		(TCF) derivative			
1.	Sens. Actuators B	AIE active	Tris-HCl	0.58 g/mL	Human serum
	Chem., 2017 , 243,	amphiphilic	buffer	-	albumin and
	831-837	molecule			chitosan
3.	Chem. Commun.,	Coumarin derivative	PBS buffer	0.21 mg/	HSA and BSA
	2017, 53, 6432	with dioxaborine		mL	
	6435	unit			
6.	Dyes and Pigments,	Three	PBS buffer	0.57 mg/L	Human Serum
	2018, 152,60–66	fluorescent chalcone-		-	Albumin
		based dyes			
		CD1-3			
	J. Lumin., 2018,	Two NIR	PBS buffer	0.66 mg/L	Human Serum
	197. 193–199	fluorescence		2.04 mg/L	Albumin and
		probes BI-FPI and		0	Bovine Serum
		NTPS-FPI			Albumin
7.	Talanta, 2018, 185.	Probe XYQ based	PBS buffer	0.0033 g/L	Human Serum
	568-572	on the guinoline ring			Albumin (site I
		and indole ring			binding)
					
8.	Present Work	Di-substituted Urea	Water	5 μg/mL	Human Serum
					Albumin

Table S3: Recent progress in the field of HSA sensing, a comparative study.

Figure S20: Changes in the emission intensity of L_1 (2 μ M) at 438 nm with time upon interaction with HSA (150 μ g/mL); λ_{ex} =380 nm.

Figure S21: Changes in the emission intensity of L_1 (2 μ M) at 438 nm in presence of HSA (150 μ g/mL) in bio-fluidic samples [SBF- Simulated Body Fluid (pH~7.4), SIF- Simulated Gastric Fluid (pH~2.0) and SGF- Simulated Intestinal Fluid (pH~8.0)].

Figure S22: Fluorescence spectra of L_1 (2 μ M) in presence of HSA (150 μ g/mL) in artificial urine sample.

4			Distance	Ligand Atom	Protein Atom
1	210A	ALA	3.26	11277	2029
2	213A	ALA	3.01	11264	2060
3	216A	VAL	3.32	11262	2090
4	327A	LEU	3.42	11261	3134
5	347A	LEU	3.62	11284	3343
6	481A	LEU	3.34	11280	4646
7	482A	VAL	3.10	11280	4654

Figure S23: Interactions encountered in the Docking conformation of HSA/L_1 with the lowest binding free energy obtained from Protein-Ligand Interaction Profiler.