Supporting information

A novel turn-on fluorescent probe for selective sensing and imaging of glutathione

in live cells and organisms

Xiaodong Zhang^a[†], Ziqian Wang^b[†], Zongwei Guo^c, Nianzhe He^a, Peng Liu^c, Dasha Xia^d, Xiufen

Yan^d and Zhichao Zhang^a*

^a State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology,

Dalian, China.

^b Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, China.

^c School of Life Science and Technology, Dalian University of Technology, Dalian, China.

^dSchool of Environmental and Chemical Engineering, Jiangsu University of Science & Technology,

Zhenjiang, China.

*Corresponding author: E-mail: zczhang@dlut.edu.cn

Scheme S1. Synthesis of OPD-based probes. Reagents and conditions: (a) acetonitrile, reflux, 5h;(b) acetonitrile, K₂CO₃, 2h; (c) acetonitrile, rt.

probe	^a Abs _{max} /nm	<i>a</i> Em _{max} /nm	$\epsilon/10^4 \text{ M}^{-1} \text{ cm}^{-1}$	$b\Phi_{\mathrm{F}}(\%)$
O-2F	569	579	2.45	 <i>C</i>
O-Br	552	575	2.75	 <i>c</i>
О-Н	563	572	2.70	 <i>c</i>
O-CH ₃	553	570	2.65	 <i>c</i>
O-2OCH ₃	564	572	2.55	 <i>c</i>
O-NH ₂	567	568	2.82	0.09
O-NH ₂ -GSH	533	606	2.85	0.42

Table S1 Photophysical properties of probes.

^aMeasured in 10 µM phosphate buffer (pH 7.4, 1% DMSO).

 ${}^{b}\Phi_{F}$ is the relative fluorescence quantum yield estimated by using rhodamine B

(Φ_F =0.89, ethanol) as a fluorescence standard.

^cundetectable.

Figure S1 Fluorescence response of OPD-based probes (10 µM) to GSH, Cys and Hcy (100 µM,

60 min) in PBS (10 mM, pH 7.4, containing 1% DMSO).

Figure S2 Mass spectrum of probe $\textbf{O-NH}_2\text{+}\text{GSH}$

Figure S3. pH influence on the fluorescence intensity ($\lambda_{em} = 606 \text{ nm}$) of the 10 μ M probe **O-NH**₂ in the absence (\blacksquare) or presence of 10 equiv. of GSH (\bigcirc).

Figure S4. The cell viability of HeLa cells incubated with different concentration of $O-NH_2$, measured by MTT assay. HeLa cells were incubated with 0-30 μ M $O-NH_2$ at 37°C for 24h.

NO.	Probes	LOD for GSH (mol L ⁻¹)	Ref.
	CN CN CN	$2.3 imes 10^{-8}$	This
1			work
	S NH ₂		
	\bigcirc	$8.6 imes 10^{-8}$	[25]
2			
	R: st N YO JOH		

Table S2 Comparative study of analytical performance of O-NH₂ with other reported probes.

3		2.6× 10 ⁻⁸	[26].
4	$\begin{array}{c} \hline coo^{\circ}Bu & coo^{\circ}Bu \\ & H_3CO & OCH_3 \\ & H_3CO & OCH_3$	5.0 × 10 ⁻⁸	[31]
5		6.3 × 10 ⁻⁸	[37]
6		6.6×10^{-8} M (0–6 μM) 7.6 × 10 ⁻⁹ M (7–15 μM) 1.3×10^{-8} M (15–100 μM)	[38]
7	N N N N N N N N N N N N N N N N N N N	5.0 × 10 ⁻⁹	[39]
8		NA	[40]

Figure S5. Confocal fluorescence images of Zebrafish embryos. (a) Zebrafish embryos. (b) Zebrafish embryos incubated with probe **O-NH**₂ (5 μ M) for 1 h. (c) Zebrafish embryos were pretreated with NEM (50 μ M) for 1 h and then further incubated with probe **O-NH**₂ (5 μ M) for 1 h. Emission was collected at 600–650 nm, under excitation with 488 nm laser. Scale bar = 200 μ m. All the fluorescence images were taken under the same experimental conditions.