Electronic Supplementary Information

Dispersive micro-solid phase extraction based on Fe₃O₄@SiO₂@Ti-MOF as a magnetic nanocomposite sorbent for the trace analysis of caffeic acid in the medical extracts of plants and water samples prior to HPLC-UV analysis

Zohreh Moradi ^a, Ebrahim Alipanahpour Dil ^a and Arash Asfaram ^{*b}

- ^a Department of Chemistry, Yasouj University, Yasouj 75918-74831, Iran.
- ^b Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.

^{*} Corresponding author: E-mail address: arash.asfaram@yums.ac.ir (A. Asfaram)

Contents

1. Figures

Fig. S1. Calibration curve of caffeic acid at different concentrations and its chemical structure (inset).

Fig. S2. Effect of different types of desorption (eluent) solvent on the extraction of CA with $Fe_3O_4@SiO_2@Ti-MOF$ nanocomposites (conditions: initial pH value of 6.0 for sample solution, magnetic nano-sorbent mass of 12 mg, sonication, vortex, and desorption time of 2.0, 2.0, and 5 min, respectively, and 150 µL of eluting phase at room temperature).

Pareto Chart of Standardized Effects; Variable: ER% CA

Fig. S3. Standardized (P = 0.05) Pareto chart showing the estimated effects of parameters obtained from the Plackett-Burman screening design for CA.

Fig. S4. Chromatograms of methanolic extract of plants before (a) and after (b) microextraction under optimal conditions.

Fig. S5. Reusability tests of the Fe₃O₄@SiO₂@Ti-MOF-NCs for the recovery efficiency toward CA.

2. Tables

Table. S1. Analysis of variance (ANOVA) for response surface quadratic model of CA extraction determined from CCD.

Source	Sum of squares	Degree of freedom	Mean square	F value	P value
Model	5496.04	14	392.57	307.33	< 0.0001
X ₁	840.50	1	840.50	657.98	< 0.0001
X ₂	620.22	1	620.22	485.54	< 0.0001
X ₃	61.52	1	61.52	48.16	0.0009
X ₄	51.21	1	51.21	40.09	0.0015
X ₁ X ₂	35.53	1	35.53	27.82	0.0033
X ₁ X ₃	44.70	1	44.70	34.99	0.0020
X ₁ X ₄	26.09	1	26.09	20.42	0.0060
X ₂ X ₃	321.19	1	321.19	251.44	< 0.0001
X ₂ X ₄	56.14	1	56.14	43.95	0.0012
X ₃ X ₄	79.15	1	79.15	61.97	0.0005
X ₁ ²	20.06	1	20.06	15.71	0.0107
X2 ²	29.53	1	29.53	23.12	0.0050
X ₃ ²	832.46	1	832.46	651.69	< 0.0001
X ₄ ²	1248.99	1	1248.99	977.77	< 0.0001
Residual	6.39	5	1.28		
Lack of Fit	1.67	2	0.84	0.53	0.6342
Pure Error	4.71	3	1.57		
Corr. Total	5502.43	19			

Table. S2. Figure of merits for MD-µ-SPE of CA.

Quantitative analysis	Values
Sample volume (mL)	15
Extraction solvent (mL)	0.24
Linear range (ng mL ⁻¹)	0.15-3200
Coefficients of determination (R ²)	>0.987
Limit of detections (LODs) (ng mL ⁻¹)	0.016-0.021
limit of quantification (LOQs) (ng mL ⁻¹)	0.052-0.068
Enrichment factors (EFs)	105.92-132.03
Preconcentration factor (PF)	62.5
Reproducibility (RSD, %)	3.65-8.66
Repeatability (RSD, %)	1.84-5.54

Table S3. Langmuir, Freundlich isotherm constants, and separation factors (R_L) for the sorption of CA onto Fe₃O₄@SiO₂@Ti-MOF-NCs sorbent.

Isotherm	Freundlich isotherm		Langmuir isotherm				
Equation	$\log q_e = \log K_F + (1/n) \log C_e$		$C_e/q_e = (1/Q_{max} K_L) + C_e/Q_{max}$				
					$R_{L}=(1)$	$/(1+K_{\rm L}C_0)$	
Plot	log q _e vs. log C _e			C_e/q_e vs. C_e			
Parameters	1/n	K _F	R ²	Q _{max}	KL	R ²	R _L
Unit	-	L mg ⁻¹	-	mg g ⁻¹	L mg ⁻¹	-	-
Fe ₃ O ₄ @SiO ₂ @Ti-MOF-NCs	0.769	5.053	0.968	183.71	0.321	0.996	0.055-0.342