SUPPORTING INFORMATION

A cyanide-sensing detector in aqueous solution based on anion- π interaction driven electron transfer

Guangwen Men, Wenkun Han, Chunrong Chen, Chunshuang Liang and

Shimei Jiang*

* E-mail: smjiang@jlu.edu.cn

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Avenue, Changchun, 130012, P. R. China.

Tel: +86-431-85168474, Fax: +86-431-85193421

Instrumental methods

Reagents and solvents were purchased from Sigma-Aldrich, Alfa Aesar, and STREM and were used without further purification. Deuterated solvents were purchased from Euriso-TOP or Sigma-Aldrich and used without further purification.

Nuclear magnetic resonance spectra were recorded on a Bruker Ultra Shield 500 MHz and chemical shifts were expressed in ppm using TMS as an internal standard. Fluorescence spectra were obtained with a Shimadzu RF-5301 PC spectrophotometer with a quartz cuvette (path length = 1 cm). Absorption spectra were recorded using a Shimadzu 3100 UV-vis-NIR spectrophotometer. Mass spectra were obtained on Bruker MicroTOF (HRMS on Bruker MicroTOF-Q), with electrospray ionization. Nominal precision of the HRMS analysis is 10 ppm.

The EPR spectra were obtained on a JES-FA 200 EPR spectrometer.

Cyclic voltammetry (CV) experiments were performed on a BASi Epsilon potentiostat connected to a C3 standard electrochemical cell, consisting of a Pt gauche working electrode, Pt-wire counter electrode, and a Ag/AgCl reference electrode.

Figure S1. ESI-MS spectra of HAT(CN)₆ (1 mM, CH₃CN) containing CN⁻ (0.5 equiv.) at room temperature.

Figure S2. EPR spectra of HAT(CN)₆ (1 mM, CH₃CN) containing CN⁻ (1 equiv.) at room temperature.

Figure S3. (a) UV-vis and (b) fluorescence spectroscopic changes of 50 μ M HAT(CN)₆ as a result of titration with various anions (200 μ M) in CH₃CN. ($\lambda_{ex} = 450$ nm)

Figure S4. (a) UV-vis spectroscopic changes of 50 μ M HAT(CN)₆ as a result of titration with CN⁻ in a 1:1 CH₃CN/H₂O solution ([CN⁻] = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1 equiv. of HAT(CN)₆). (b) UV-vis absorption changes at 394 nm with increasing CN⁻ concentrations in the range of 0-20 μ M.

Figure S5. UV-vis spectroscopic changes of 50 μ M HAT(CN)₆ as a result of titration with CN⁻ in a 1:1 CH₃CN/H₂O solution ([CN⁻] = 1, 1.6, 2, 2.5, 3, 4, 6, 8 and 10 equiv. of HAT(CN)₆).

Figure S6. Time course of the fluorescence intensity at 545 nm of 50 μ M HAT(CN)₆ with 6 equivalent of CN⁻ in CH₃CN/H₂O (1:1, v:v) solution at room temperature ($\lambda_{ex} = 450$ nm).