Supporting Information

Enhancing colorimetric detection of H₂O₂ and ascorbic acid on

polypyrrole coating fluconazole functionalized POMOFs

Xiao Li,^a Longjiang Sun,^b Xiya Yang, Kunfeng Zhou,^a Gongguo Zhang,^a Zhibo Tong,^a Cheng Wang,^{*b,c} and Jingquan Sha^{*a}

^aDepartment of Chemistry and Chemical Engineering, Jining University, Qufu 273155, P. R. China.

^bSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China.

^cKey Laboratory of Preparation and Application of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun 130103, P. R. China.

Fig. S1 Crystal photograph of AgFKZSiW₁₂ under optical microscope.

Fig. S2 (a) Combined ball/stick representation of the asymmetric unit of $AgFKZSiW_{12}$ (all the hydrogen atoms and water molecules have been omitted for clarity); (b) The coordination view of Ag ions.

Fig. S3 Combined polyhedral/ball/stick (a), schematic (b), and topological representation (c) of the overall three-dimensional supramolecular hybrid framework along the *abc* plane in $AgFKZSiW_{12}$ (the turquoise nodes symbolize FKZ ligands).

Fig. S4 The corresponding mapping images of C, W, Ag, O, Si, N, and F in AgFKZSi W_{12} .

Fig. S5 EDX spectrometry of AgFKZSiW₁₂@PPy.

Fig. S6 (a) XPS spectra of AgFKZSiW₁₂@PPy; (b) N 1s; (c) C 1s; (d) W 4f; (e) Ag 3d; (f) O 1s.

Fig. S7 DRS of AgFKZSiW₁₂ and AgFKZSiW₁₂@PPy.

Fig. S8 UV-vis absorption spectra of $AgFKZSiW_{12}$ (a) and PPy (b) catalyzed TMB colorimetric system as a function of reaction time from 2 to 16 min.

Fig. S9 Time-dependent absorbance of AgFKZSiW₁₂ in the absence of H₂O₂ or TMB. Typical reaction conditions: acetate buffer solution (pH=3.5), H₂O₂ 83 μ M and TMB 104 μ M at 40 °C.

Fig. S10 UV-vis absorption spectra of AgFKZSiW₁₂@PPy catalyzed TMB colorimetric system as a function of reaction acidity (a), reaction temperature (b) and AgFKZSiW₁₂@PPy dosage (c). (d) Dependence of the peroxidase-like activity on AgFKZSiW₁₂@PPy dosage (dosage: 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8 mg/mL).

Fig. S11 Time-dependent absorbance changes at 661 nm in the presence of 0 mg/mL (black), 0.2 mg/mL (red), 0.4 mg/mL (blue), and 0.6 mg/mL (brown) AgFKZSiW₁₂@PPy in buffer solution (pH 3.5).

Fig. S12 Steady-state kinetic assays of AgFKZSiW₁₂: (a) 100 μ M H₂O₂ with varying TMB concentration, (b) 40 μ M TMB with varying H₂O₂ concentration. The reaction was performed in pH=3.5 buffer solution at 40 °C.

Fig. S13 CV curves of CPEs modified with AgFKZSiW₁₂@PPy (a) and AgFKZSiW₁₂ (b) in the presence of 0, 3, 6, and 9 mM H_2O_2 .

Preparations of AgFKZSiW₁₂ and AgFKZSiW₁₂@PPy modified carbon paste electrode (AgFKZSiW₁₂-CPE and AgFKZSiW₁₂@PPy-CPE)

AgFKZSiW₁₂ modified carbon paste electrode (AgFKZSiW₁₂-CPE) was fabricated as follows: 96 mg of graphite powder and 8 mg of AgFKZSiW₁₂ were mixed and ground together by agate mortar and pestle to achieve a uniform mixture, and then 0.6 mL nujol was added with stirring. The homogenized mixture was packed into a glass tube with 1.2 mm inner diameter, and the tube surface was wiped with paper. Electrical contact was established with a copper rod through the back of the electrode. AgFKZSiW₁₂@PPy-CPE was made with AgFKZSiW₁₂@PPy in a similar manner.

Fig. S14 Fluorescence spectra of TA solution $(2 \times 10^{-3} \text{ M})$ in the absence and presence of AgFKZSiW₁₂ and AgFKZSiW₁₂@PPy with H₂O₂ (100 mM). (a) 0 mg AgFKZSiW₁₂@PPy, (b) 3 mg AgFKZSiW₁₂, and (c) 3 mg AgFKZSiW₁₂@PPy during photoluminescence probing, respectively.

Fig. S15 PXRD patterns of AgFKZSiW₁₂ and AgFKZSiW₁₂@PPy before and after peroxidase-like activity evaluation.

Fig. S16 FT-IR spectra of $AgFKZSiW_{12}$ before and after peroxidase-like activity evaluation.

Fig. S17 FT-IR spectra of AgFKZSiW₁₂@PPy before and after peroxidase-like activity evaluation.

Fig. S18 Reusability of AgFKZSiW₁₂@PPy after repeated cycles.

Scheme S1. The oxidation reaction of TMB catalyzed by $AgFKZSiW_{12}@PPy$ in the presence of H_2O_2 .

Scheme S2. Hydroxyl radicals (·OH) induced the conversion of non-fluorescent terephthalic acid to highly fluorescent 2-hydroxyterephthalic acid.

Chemical formula	$C_{26}H_{29}Ag_3F_4N_{12}O_{42}SiW_{12}$
Formula weight	3847.33
CCDC	1850730
Temperature (K)	293(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	C2/c
<i>a</i> (Å)	31.006(2)
<i>b</i> (Å)	11.2468(7)
<i>c</i> (Å)	23.0508(16)
α (°)	90
β (°)	127.716(1)
γ (°)	90
V (Å ³)/Z	6358.7(7)/4
Density (g·cm ⁻³)	4.078
Abs coeff. (mm ⁻¹)	22.653
F(000)	6900.0
Data collect θ range	1.660 to 25.000°
Collected/ Independent Reflns	15481/5612
R _{int}	0.0600
Data/restraints/parameters	5612/6/481
Goodness-of-fit on F ²	1.076
Final R indices $[I > 2\delta(I)]$	$R_1 = 0.0529, wR_2 = 0.1455$
R indices (all data)	$R_1 = 0.0616, wR_2 = 0.1521$
Largest diff. peak and hole (e.Å ⁻³)	2.333 and -4.412

Table S1. Crystal data and structure refinements for AgFKZSi W_{12} .

 $\frac{1}{R_1 = \Sigma(||F_0| - |F_c||)/\Sigma|F_0|, wR_2 = \Sigma w(|F_0|^2 - |F_c|^2)^2/\Sigma w(|F_0|^2)^2]^{1/2}}$

PI for W1	2.497	1.917	1.876	1.922	1.652	1.922	
BL IOT WI	(06)	(011)	(017)	(018)	(021)	(023)	
	1.667	2.530	1.863	1.855	1.870	1.910	
BL for W2	(02)	(06)	(09)	(011)	(012)	(015)	
	1.676	1.906	1.891	1.903	1.885	2.518	
BL for W3	(01)	(05)	(08)	(014)	(018)	(O20)	
	1.920	1.679	1.870	1.936	1.895	2.485	
BL for W4	(012)	(013)	(014)	(017)	(019)	(O20)	
DL C. W/5	2.517	1.874	1.926	1.883	1.658	1.894	
BL for W5	(06)	(08)	(010)	(015)	(016)	(O23)	
	1.678	1.894	2.490	1.912	1.877	1.878	
BL for Wo	(03)	(05)	(07)	(09)	(010)	(019)	
DL for A of	2.364	2.364	2.681	2.681	2.487	2.487	
BL IOF AGI	(N5)	(N5)	(O1W)	(01W)	(04)	(04)	
	2.140	2.135					
BL IOF Ag 2	(N3)	(N6)					
BV for W1	0.1169	0.9277	1.0740	0.9113	2.3903	0.9113	6.3316 (total)
BV for W2	1.9653	0.1039	1.1250	1.1576	1.0973	0.9512	6.4005 (total)
BV for W3	2.1939	0.9649	1.0180	0.9753	1.0400	0.1084	6.3007 (total)
BV for W4	0.9178	2.1705	1.0973	0.8668	1.0035	0.1220	6.1782 (total)
BV for W5	0.1088	1.0817	0.8983	1.0475	2.0137	1.0641	6.2143 (total)
BV for W6	1.9077	1.0071	0.1198	0.9444	1.1141	1.1111	6.2046 (total)
BV for Ag1	0.2987	0.1879	0.0605	0.0605	0.2142	0.2142	1.0364 (total)
BV for Ag2	0.5473	0.4258					0.9732 (total)

Table S2. The BVS calculations of W and Ag atoms in AgFKZSiW₁₂ (BL= bond length, BV= bond valence).

Table S3. Comparison of AgFKZSi W_{12} @PPy and other reported enzyme mimics for the detectionof H_2O_2 and AA.

Enzyme mimics	Analyte	LOD (µM)	Range (µM)	Ref.
H ₄ SiW ₁₂ O ₄₀ (HSiW)	H_2O_2	0.4	1-20	1
FF@PW12@GO	H_2O_2	0.11	1-75	2
$Cu_6(Trz)_{10}(H_2O)_4[H_2SiW_{12}O_{40}]$	H_2O_2	1.37	10-50	3
$Na_{4}H_{2}[Cu_{4}(im)_{14}][Cu_{3}(H_{2}O)_{3}(BiW_{9}O_{33})_{2}]$	H_2O_2	0.12	1-50	4
$Na_4H_2[Cu_4(im)_{14}][Cu_3(H_2O)_3(SbW_9O_{33})_2]$	H_2O_2	0.12	1-50	4
$Na_4(NH_4)_{14}[Zr_4(\mu-O)_4(OAc)_2(P_2W_{16}O_{59})_2]$	H_2O_2	100	100-1000	5
MOF-808	H_2O_2	4.5	10-15000	6
AgFKZSiW ₁₂ @PPy	H_2O_2	0.12	1-100	This work
MOF-808	AA	15	30-1030	6

CuNPs@C	AA	1.41	10-1000	7
MIL-68/MIL-100	AA	6	30-485	8
AgFKZSiW ₁₂ @PPy	AA	2.7	1-80	This work

References

- 1 S. Liu, J. Q. Tian, L. Wang, Y. W. Zhang, Y. L. Luo, H. Y. Li, A. M. Asiri, A. O. Al-Youbi and X. P. Sun, *ChemPlusChem*, 2012, **77**, 541-544.
- 2 Z. Ma, Y. F. Qiu, H. H. Yang, Y. M. Huang, J. J. Liu, Y. Lu, C. Zhang and P. A. Hu, *ACS Appl. Mater. Interfaces*, 2015, 7, 22036-22045.
- 3 E. L. Zhou,; C. Qin, P. Huang, X. L. Wang, W. C. Chen, K. Z. Shao and Z. M. Su, *Chem. Eur. J.*, **2015**, 21,11894-11898.
- 4 D. F. Chai, Z. Ma, H. Yan, Y. Qiu, H. Liu, H. D. Guo and G. G. Gao, *RSC Adv.*, 2015, 5, 78771-78779.
- 5 D. Li, H. Han, Y. Wang, X. Wang, Y. Li and E. Wang, *Eur. J. Inorg. Chem.*, 2013, **2013**, 1926-1934.
- 6 H. Q. Zheng, C. Y. Liu, X. Y. Zeng, J. Chen, J. Lü, R. G. Lin, R. Cao, Z. J. Lin and J. W. Su, *Inorg. Chem.*, 2018, 57, 9096-9104.
- 7 H. L. Tan, C. J. Ma, L. Gao, Q. Li, Y. H. Song, F. G. Xu, T. Wang and L. Wang, *Chem. Eur. J.*, 2014, 20, 16377-16383.
- 8 J. W. Zhang, H. T. Zhang, Z. Y. Du, X. Wang, S. H. Yu and H. L. Jiang, *Chem. Commun.*, 2014, **50**, 1092-1094.

Table S4. Determination of AA concentration in human serum samples using the proposed sensor.

Sample	Added (µM)	Measured (µM)	Recovery (%)	RSD (%, n=3)
	0	5.337±0.104	_	1.9
Serum sample	4	9.181±0.156	98.9	2.2
	8	13.453±0.216	101.7	2.0

Table S5. Selected bond lengths (Å) and bond angles (°) for AgFKZSiW₁₂.

Bond	Lengths	Bond	Lengths
O(20)-W(1)#2	2.397(17)	O(20)-W(4)#4	2.48(2)
C(2)-N(2)	1.27(2)	O(20)-W(3)	2.519(17)
C(2)-N(6)	1.37(2)	O(21)-W(1)	1.653(11)
C(3)-N(6)	1.32(2)	O(22)-Si(1)#7	1.53(2)
C(3)-N(1)	1.326(19)	C(4)-N(1)	1.423(19)
C(5)-N(5)	1.31(2)	O(22)-W(4)	2.512(18)
C(5)-N(3)	1.37(2)	O(22)-W(2)	2.420(16)
C(7)-F(1)	1.323(19)	O(22)-W(6)	2.489(19)
O(23)-W(5)#5	1.894(11)	O(23)-W(1)	1.922(12)
C(8)-N(4)	1.464(18)	Si(1)-O(6)#3	1.44(2)

Si(1)-O(22)#4	1.53(2)	Si(1)-O(7)#3	1.53(2)
C(11)-F(2)	1.305(18)	Si(1)-O(22)#2	1.53(2)
Ag(1)-N(5)#8	2.363(13)	Si(1)-O(20)#3	1.535(18)
C(13)-N(4)	1.315(19)	Ag(1)-O(4)#8	2.487(10)
C(13)-N(3)	1.28(2)	Ag(2)-N(6)#9	2.134(13)
N(3)-Ag(2)	2.140(12)	W(1)-O(18)#7	1.922(13)
N(4)-N(5)	1.332(19)	W(1)-O(20)#7	2.397(17)
N(5)-Ag(1)	2.363(13)	W(1)-O(6)#5	2.498(19)
N(6)-Ag(2)#1	2.134(13)	W(4)-O(14)#5	1.870(11)
O(1)-W(3)	1.678(10)	W(4)-O(17)#6	1.935(13)
O(2)-W(2)	1.667(11)	W(4)-O(20)#5	2.48(2)
O(3)-W(6)	1.678(11)	W(5)-O(15)#4	1.882(12)
O(4)-Ag(1)	2.487(10)	W(5)-O(23)#4	1.894(11)
O(5)-W(6)#2	1.895(12)	W(6)-O(10)#7	1.877(14)
O(5)-W(3)	1.905(13)	W(6)-O(5)#7	1.895(12)
O(6)-Si(1)	1.44(2)	W(6)-O(7)#7	2.490(17)
O(18)-W(1)#2	1.922(13)	O(17)-W(4)#6	1.935(13)
O(6)-W(1)#4	2.498(18)	O(18)-W(3)	1.884(14)
O(6)-W(5)	2.52(2)	O(19)-W(6)	1.877(11)
O(7)-Si(1)	1.53(2)	O(19)-W(4)	1.896(12)
O(7)-W(5)	2.439(19)	O(20)-Si(1)	1.535(18)
O(7)-W(6)#2	2.490(17)	O(14)-W(3)	1.903(12)
O(7)-W(3)	2.499(17)	O(15)-W(5)#5	1.882(12)
O(8)-W(5)	1.875(12)	O(15)-W(2)	1.911(11)
O(8)-W(3)	1.890(14)	O(16)-W(5)	1.658(13)
O(9)-W(2)	1.863(12)	O(17)-W(1)	1.877(13)
O(9)-W(6)	1.911(13)	O(11)-W(1)	1.916(12)
O(10)-W(6)#2	1.877(14)	O(12)-W(2)	1.869(10)
O(10)-W(5)	1.927(14)	O(12)-W(4)	1.921(12)
O(11)-W(2)	1.856(11)	O(13)-W(4)	1.679(12)
O(14)-W(4)#4	1.870(11)		
Bond	Angles	Bond	Angles
W(6)#2-O(5)-W(3)	140.1(8)	W(1)#4-O(6)-W(5)	90.3(7)
W(5)-O(7)-W(6)#2	92.8(7)	Si(1)-O(7)-W(6)#2	123.2(10)
C(5)-N(3)-Ag(2)	129.7(12)	W(5)-O(7)-W(3)	91.8(7)
W(2)-O(9)-W(6)	139.3(8)	W(6)#2-O(7)-W(3)	91.5(6)
W(6)#2-O(10)-W(5)	139.6(11)	W(5)-O(8)-W(3)	140.7(10)
C(5)-N(5)-Ag(1)	132.3(13)	W(2)-O(11)-W(1)	140.7(7)

N(4)-N(5)-Ag(1)	122.8(9)	W(2)-O(12)-W(4)	139.0(8)
C(13)-N(3)-Ag(2)	126.5(11)	W(4)#4-O(14)-W(3)	140.9(9)
C(3)-N(6)-Ag(2)#1	127.4(10)	W(5)#5-O(15)-W(2)	139.8(8)
C(2)-N(6)-Ag(2)#1	126.7(11)	W(1)-O(17)-W(4)#6	137.8(10)
Si(1)#7-O(22)-W(4)	122.5(8)	W(3)-O(18)-W(1)#2	137.6(10)
O(6)#5-O(22)-W(4)	132.3(11)	W(6)-O(19)-W(4)	141.1(8)
W(5)#5-O(23)-W(1)	137.3(8)	W(6)-O(22)-W(4)	90.7(7)
O(6)#3-Si(1)-O(6)	180.0(11)	W(2)-O(22)-W(4)	92.1(6)
O(6)#3-Si(1)-O(7)#3	68.4(9)	Si(1)-O(20)-W(4)#4	123.7(9)
O(6)-Si(1)-O(7)#3	111.6(9)	O(6)#3-Si(1)-O(7)	111.6(9)
O(6)-Si(1)-O(7)	68.4(9)	W(1)#2-O(20)-W(4)#4	93.5(7)
O(7)#3-Si(1)-O(7)	180.0	Si(1)-O(20)-W(3)	120.3(10)
O(6)#3-Si(1)-O(22)#4	110.5(9)	O(6)-Si(1)-O(22)#4	69.5(9)
O(7)#3-Si(1)-O(22)#4	71.5(9)	W(1)#2-O(20)-W(3)	92.4(5)
O(7)-Si(1)-O(22)#4	108.5(9)	W(4)#4-O(20)-W(3)	90.6(6)
O(6)#3-Si(1)-O(22)#2	69.5(9)	Si(1)#7-O(22)-O(6)#5	52.9(9)
O(6)-Si(1)-O(22)#2	110.5(9)	Si(1)#7-O(22)-O(7)#7	54.2(8)
O(7)#3-Si(1)-O(22)#2	108.5(9)	O(22)#4-Si(1)-O(22)#2	180.0
O(7)-Si(1)-O(22)#2	71.5(9)	O(6)#3-Si(1)-O(20)	67.8(9)
O(6)-Si(1)-O(20)	112.2(9)	Si(1)#7-O(22)-W(2)	126.4(10)
O(7)#3-Si(1)-O(20)	105.5(9)	O(22)#2-Si(1)-O(20)	108.3(9)
O(7)-Si(1)-O(20)	74.5(9)	O(6)#3-Si(1)-O(20)#3	112.2(10)
O(22)#4-Si(1)-O(20)	71.7(9)	O(6)-Si(1)-O(20)#3	67.7(9)
O(7)-Si(1)-O(20)#3	105.5(9)	W(2)-O(22)-W(6)	92.2(6)
O(22)#4-Si(1)-O(20)#3	108.3(9)	O(13)-W(4)-O(17)#6	101.2(7)
O(22)#2-Si(1)-O(20)#3	71.7(9)	O(14)#5-W(4)-O(17)#6	87.2(5)
O(20)-Si(1)-O(20)#3	179.999(10)	O(19)-W(4)-O(17)#6	86.2(6)
N(5)#8-Ag(1)-N(5)	180.0	O(12)-W(4)-O(17)#6	156.0(7)
N(5)#8-Ag(1)-O(4)#8	77.0(4)	O(13)-W(4)-O(20)#5	157.7(6)
N(5)-Ag(1)-O(4)#8	103.0(4)	O(14)#5-W(4)-O(20)#5	64.6(6)
N(5)#8-Ag(1)-O(4)	103.0(4)	O(19)-W(4)-O(20)#5	90.3(6)
O(7)#3-Si(1)-O(20)#3	74.5(9)	O(12)-W(4)-O(20)#5	94.1(6)
O(4)#8-Ag(1)-O(4)	180.0	O(17)#6-W(4)-O(20)#5	62.8(7)
N(6)#9-Ag(2)-N(3)	175.8(5)	O(13)-W(4)-O(22)	160.2(6)
O(21)-W(1)-O(17)	101.3(8)	O(14)#5-W(4)-O(22)	92.3(8)
O(21)-W(1)-O(11)	101.9(6)	O(19)-W(4)-O(22)	63.4(6)
O(17)-W(1)-O(11)	156.7(8)	O(12)-W(4)-O(22)	62.8(5)
O(21)-W(1)-O(23)	101.6(7)	O(17)#6-W(4)-O(22)	93.9(7)

O(17)-W(1)-O(23)	88.8(6)	O(20)#5-W(4)-O(22)	42.1(6)
O(11)-W(1)-O(23)	88.1(5)	O(16)-W(5)-O(8)	100.8(9)
O(21)-W(1)-O(18)#7	99.9(8)	O(16)-W(5)-O(15)#4	101.7(7)
O(17)-W(1)-O(18)#7	88.0(5)	O(8)-W(5)-O(15)#4	88.8(5)
O(11)-W(1)-O(18)#7	86.4(6)	O(16)-W(5)-O(23)#4	102.4(8)
O(23)-W(1)-O(18)#7	158.4(8)	O(8)-W(5)-O(23)#4	156.8(8)
O(21)-W(1)-O(20)#7	159.8(7)	O(15)#4-W(5)-O(23)#4	87.7(5)
O(17)-W(1)-O(20)#7	65.3(7)	O(16)-W(5)-O(10)	102.3(9)
O(11)-W(1)-O(20)#7	91.8(7)	O(8)-W(5)-O(10)	87.0(5)
O(23)-W(1)-O(20)#7	93.5(6)	O(15)#4-W(5)-O(10)	156.0(8)
O(18)#7-W(1)-O(20)#7	65.9(7)	O(23)#4-W(5)-O(10)	86.9(6)
O(21)-W(1)-O(6)#5	160.6(7)	O(16)-W(5)-O(7)	158.9(8)
O(17)-W(1)-O(6)#5	93.5(7)	O(8)-W(5)-O(7)	64.3(7)
O(11)-W(1)-O(6)#5	64.3(6)	O(15)#4-W(5)-O(7)	93.1(6)
O(23)-W(1)-O(6)#5	65.9(6)	O(23)#4-W(5)-O(7)	93.0(7)
O(18)#7-W(1)-O(6)#5	93.0(8)	O(10)-W(5)-O(7)	63.8(7)
O(20)#7-W(1)-O(6)#5	39.6(6)	O(16)-W(5)-O(6)	161.7(8)
O(2)-W(2)-O(11)	101.7(7)	O(8)-W(5)-O(6)	92.0(7)
O(2)-W(2)-O(9)	101.3(8)	O(15)#4-W(5)-O(6)	65.3(6)
O(11)-W(2)-O(9)	86.2(6)	O(23)#4-W(5)-O(6)	65.8(6)
O(2)-W(2)-O(12)	102.1(7)	O(10)-W(5)-O(6)	91.2(8)
O(11)-W(2)-O(12)	156.2(7)	O(7)-W(5)-O(6)	39.3(6)
O(9)-W(2)-O(12)	89.6(5)	O(3)-W(6)-O(10)#7	100.7(8)
O(2)-W(2)-O(15)	102.4(7)	O(3)-W(6)-O(19)	104.4(7)
O(11)-W(2)-O(15)	87.6(5)	O(10)#7-W(6)-O(19)	88.0(6)
O(9)-W(2)-O(15)	156.3(7)	O(3)-W(6)-O(5)#7	100.9(7)
O(12)-W(2)-O(15)	86.9(5)	O(10)#7-W(6)-O(5)#7	87.3(6)
O(2)-W(2)-O(22)	160.0(8)	O(19)-W(6)-O(5)#7	154.7(7)
O(11)-W(2)-O(22)	91.8(7)	O(3)-W(6)-O(9)	103.7(7)
O(9)-W(2)-O(22)	64.6(7)	O(10)#7-W(6)-O(9)	155.5(8)
O(12)-W(2)-O(22)	65.4(6)	O(19)-W(6)-O(9)	89.0(5)
O(15)-W(2)-O(22)	92.7(7)	O(5)#7-W(6)-O(9)	85.2(6)
O(1)-W(3)-O(18)	100.3(8)	O(3)-W(6)-O(22)	160.8(6)
O(1)-W(3)-O(8)	102.7(7)	O(10)#7-W(6)-O(22)	94.4(7)
O(18)-W(3)-O(8)	157.0(8)	O(19)-W(6)-O(22)	64.1(6)
O(1)-W(3)-O(14)	101.5(7)	O(5)#7-W(6)-O(22)	91.5(7)
O(18)-W(3)-O(14)	87.4(6)	O(9)-W(6)-O(22)	62.6(6)
O(8)-W(3)-O(14)	87.8(7)	O(3)-W(6)-O(7)#7	157.1(7)

O(1)-W(3)-O(5)	103.2(7)	O(10)#7-W(6)-O(7)#7	63.2(7)
O(18)-W(3)-O(5)	87.8(7)	O(19)-W(6)-O(7)#7	91.7(6)
O(8)-W(3)-O(5)	87.3(5)	O(5)#7-W(6)-O(7)#7	64.1(6)
O(14)-W(3)-O(5)	155.3(7)	O(9)-W(6)-O(7)#7	92.6(7)
O(1)-W(3)-O(7)	159.5(6)	O(22)-W(6)-O(7)#7	42.0(6)
O(18)-W(3)-O(7)	95.0(8)	O(14)-W(3)-O(7)	92.6(7)
O(8)-W(3)-O(7)	62.8(6)	O(5)-W(3)-O(7)	63.7(6)
O(18)-W(3)-O(20)	63.6(7)	O(1)-W(3)-O(20)	157.1(6)
O(8)-W(3)-O(20)	94.2(7)	O(13)-W(4)-O(12)	102.9(6)
O(14)-W(3)-O(20)	63.5(7)	O(14)#5-W(4)-O(12)	88.2(6)
O(5)-W(3)-O(20)	92.8(7)	O(19)-W(4)-O(12)	87.7(5)
O(7)-W(3)-O(20)	43.3(6)	O(13)-W(4)-O(19)	104.5(6)
O(13)-W(4)-O(14)#5	101.2(7)	O(14)#5-W(4)-O(19)	154.2(7)

Symmetry transformations used to generate equivalent atoms: #1 x+1/2, -y+1/2, z+1/2; #2 -x+3/2, y+1/2, -z+3/2; #3 -x+3/2, -y+1/2, -z+2; #4 x, -y, z+1/2; #5 x, -y, z-1/2; #6 -x+3/2, -y-1/2, -z+1; #7 -x+3/2, y-1/2, -z+3/2; #8 -x+1, -y, -z+1; #9 x-1/2, -y+1/2, z-1/2