Ultrasensitive and simple fluorescence biosensor for detection of the *Kras* gene by using the three-way DNA junction-driven catalyzed hairpin assembly strategy

Qiong Li,^{a,b} Danhua Zhou,^b Jiafeng Pan,^b Zhi Liu,^a and Junhua Chen^{b*}

^aCollege of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China. ^bGuangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-Environmental and Science & Technology, Guangzhou 510650, China.

*Corresponding author

E-mail: 222chenjunhua@163.com; jhchen@soil.gd.cn.

Fig. S1 Effect of the reaction temperature on the response of the sensing system. The histograms represent the fluorescence intensity of the solution in the presence of 10 nM *Kras* gene (green) and in the absence of the *Kras* gene (blue), respectively. The red line represents the S/N ratio. The corresponding error bars represent the standard deviation of three independent measurements obtained at each reaction temperature.

Fig. S2 Effect of the H2 concentration on the performance of the sensing system. The *Kras* gene concentration is 10 nM. Reactions were performed at 25 °C.

Figure. S3 Effect of the reaction time of the signal amplification on the fluorescence intensity of the proposed method for the detection of the *Kras* gene (10 nM). Incubation temperature and H2 concentration were 25 $^{\circ}$ C and 400 nM, respectively.

Method	Linear range	Detection Limit	References
Electrochemical biosensor based	168 fM-168 pM	168 fM	1
on clamp assay			
Electrochemical biosensor based	100 fM-100 pM	30 fM	2
on functional composite nanofibers			
Colorimetry biosensor base on	50 pM-20 nM	30 pM	3
enzyme-amplified ligation on			
magnetic beads			
Colorimetry biosensor base on	100 fM-100 nM	100 fM	4
chain anadiplosis-structured DNA			
nanowires			
Fluorescence biosensor base on	100 fM–20 nM	16 fM	5
loopback rolling circle			
Fluorescence biosensor base on	50 pM-20 nM	50 pM	6
double-hairpin molecular-beacon			
Fluorescence biosensor base on	2 pM-10 nM	1.8 pM	7
toehold mediated strand			
displacement reaction			
Fluorescence biosensor base on	10 fM-100 nM	2.7 fM	This work
СНА			

References

- 1 J. Das, I. Ivanov, L. Montermini, J. Rak, E. H. Sargent and S. O. Kelley, *Nat. Chem.*, 2015, **7**, 569-575.
- 2 X. Wang, G. Shu, C. Gao, Y. Yang, Q. Xu and M. Tang, *Anal. Biochem.*, 2014, **466**, 51-58.
- 3 X. Chen, A. Ying and Z. Gao, *Biosens. Bioelectron.*, 2012, **36**, 89-94.
- 4 J. Xu, Z. Wu, Y. Chen, T. Zheng, J. Le and L. Jia, *Analyst.*, 2017, **142**, 613-620.
- 5 H. Xu, D. Wu, Y. Jiang, R. Zhang, Q. Wu, Y. Liu and Z. Wu, *Talanta.*, 2017, **164**, 511-517.
- 6 H. Xu, R. Zhang, F. Li, Y. Zho, T. Peng, X. Wang and Z. Shen, *Anal. Bioanal. chem.*, 2016,
 408, 6181-6188.
- 7 J. Zhu, Y. Ding, X. Liu, L. Wang and W. Jiang, *Biosens. Bioelectron.*, 2014, **59**, 276-281.