Supporting Information for

Fluorescent S1 nuclease assay utilizing exponential strand displacement amplification

By Chang Yeol Lee,^a Hansol Kim,^a Hyo Yong Kim,^a Ki Soo Park^{*b} and Hyun Gyu Park^{*a}

^aDepartment of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 34141, Republic of Korea ^bDepartment of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea

* To whom correspondence should be addressed.

E-mail: hgpark@kaist.ac.kr (H.G. Park); Phone: +82-42-350-3932; Fax: +82-42-350-3910. E-mail: kskonkuk@gmail.com (K.S. Park); Phone: +82-2-450-3742; Fax: +82-2-450-3742.

Key material/method	Detection limit (U/μL)	Limitations	Reference
AIE change of perylene derivative	9.2 x 10 ⁻⁵	Synthesis of chemicals	1
AIE change of silole derivative	7.5 x 10 ⁻³	Synthesis of chemicals	2
Molecular beacon labeled with fluorophore and quencher	3.0 x 10 ⁻³	Labeling with fluorophore and quencher	3
FRET between fluorescent conjugated polymer and dsDNA-intercalating dye	2.6 x 10⁻ ⁶	Synthesis of chemicals	4
DNA-AgNCs as an energy acceptor in FRET	1.0 x 10 ⁻³	- Labeling with fluorophore - Synthesis of nanomaterials	5
DNA-CuNPs	3.0 x 10 ⁻⁴	Synthesis of nanomaterials	6
Fluorescence enhancement of DNA-AgNCs by G-rich sequence	1.0 x 10⁻⁵	- Synthesis of nanomaterials - Long assay time (120 min; 55 min for ours)	7
eSDA	8.7 x 10 ⁻⁵	-	This work

Table S1 Comparison of this method with previous fluorescent methods for S1 nuclease.

 Table S2 DNA sequences employed in this work.

Strand name	DNA sequence (5' → 3') ^(a,b)
FP	AAA AAA A <u>GG ATC</u> GTG CGT CTC GGC TAG T
RP	AAA AAA A <u>GG ATC</u> <mark>GCG GTC GGA AGC TCC T</mark>
еТР	GCG GTC GGA AGC TCC TAT GAC AAT GCA CTA GCC GAG ACG CAC
()	

^(a) The recognition sequence for Nt.AlwI is underlined.

^(b) The sequence in FP complementary to eTP is highlighted in blue while the sequence in RP identical to eTP is highlighted in red.

Fig. S1 The confirmation of S1 nuclease-catalyzed degradation of eTP, where the protocols are the same with those described in 'Gel electrophoresis analysis', except that the gel was stained with GelRed. 1: w/o S1 nuclease, 2: w/ S1 nuclease, 3: w/ heat-inactivated S1 nuclease. The final concentrations of eTP and S1 nuclease are 100 nM and 2 U/ μ L, respectively, while the reaction time for S1 nuclease-catalyzed degradation is 30 min.

Fig. S2 Optimization of the reaction times for S1 nuclease-catalyzed degradation and eSDA. (a) The degrees of signal change $((F_0-F)/F_0)$ at different times for S1 nuclease-catalyzed degradation, where F_0 and F are the fluorescence intensities at 527 nm from SG I in the absence and presence of S1 nuclease, respectively. The eSDA time is 30 min. (b) The degrees of signal change at different eSDA times. The S1 nuclease-catalyzed degradation time is 15 min. The final concentrations of eTP, primers, KF, Nt.AlwI, SG I, and S1 nuclease are 50 nM, 50 nM, 60 U/mL, 120 U/mL, 1X, and 1 U/µL, respectively.

Fig. S3 Optimization of the reaction concentrations of eTP, primers, and SG I. (a) The degrees of signal change $((F_0-F)/F_0)$ at different eTP concentrations, where F_0 and F are the fluorescence intensities at 527 nm from SG I in the absence and presence of S1 nuclease, respectively. The final concentrations of primers and SG I are 50 nM and 1X, respectively. (b) The degrees of signal change at different concentrations of primers (FP and RP). The final concentrations of eTP and SG I are 50 nM and 1X, respectively. (c) The degrees of signal change at different scentrations. The final concentrations of eTP and primers are 50 nM and 5 nM, respectively. The final concentration of S1 nuclease is 1 U/µL.

Fig. S4 The direct effect of ATP on eSDA. The fluorescence emission spectra from SG I after eSDA executed in the presence of varying concentrations of ATP without S1 nuclease.

References

- 1. X. Yang, F. Pu, J. Ren and X. Qu, Chem. Commun., 2011, 47, 8133-8135.
- M. Wang, D. Zhang, G. Zhang, Y. Tang, S. Wang and D. Zhu, *Anal. Chem.*, 2008, **80**, 6443-6448.
- 3. J. J. Li, R. Geyer and W. Tan, Nucleic Acids Res., 2000, 28, e52.
- 4. F. Pu, D. Hu, J. Ren, S. Wang and X. Qu, *Langmuir*, 2009, **26**, 4540-4545.
- 5. Y. Xiao, F. Shu, K.-Y. Wong and Z. Liu, *Anal. Chem.*, 2013, **85**, 8493-8497.
- R. Hu, Y.-R. Liu, R.-M. Kong, M. J. Donovan, X.-B. Zhang, W. Tan, G.-L. Shen and R.-Q. Yu, *Biosens. Bioelectron.*, 2013, 42, 31-35.
- 7. X. Tian, X.-J. Kong, Z.-M. Zhu, T.-T. Chen and X. Chu, *Talanta*, 2015, **131**, 116-120.