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Supporting figures and tables

(A) (C)
) - 2
i\‘i‘C _ Cu
% )] Q
. 21 Au
[72]
o
2
£ Ag
0 7 ‘ A
0 5 10 15
Energy (KeV)

Fig. S1. (A) TEM image of Au@AgAgNR, (B) chemical mapping image, (C) EDS spectrum.
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Fig. S2. (A) Time-dependent Raman results of 2-Mpy-encoded Au@AgAgNR nanotags. The

concentration of the nanotags was 5 nM, 20 uL. (B) Signal intensities of 2-Mpy characteristic

peak at 1002 cm! from the data in (A).
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Fig. S3. The colloidal stability of Au@AgAgNR in solution monitored by UV-vis absorption, the

colloidal of initial day showing a freshly made dispersion as well as those left for 10, and 30

days, and after different concentrations of NaCl were added.
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Fig. S4. Zeta potential measurement of original Au@AgAgNR (left) and DNA-modified

Au@AgAgNR (right).
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Fig. S5. (A) SERS spectra of AuNR with different concentrations of 2-Mpy. (B) Signal intensities

of 2-Mpy characteristic peak at 1002 cm™ from the data in (A).
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Fig. S6. (A) SERS spectra of 6x107 M 2-Mpy molecules in Au@AgNR with different volume of
AgNO; (10 mM). (B) Signal intensities of 2-Mpy characteristic peak at 1002 cm™ from the data
in (A). (C) Normalized UV-vis absorption spectra of the Au@AgNR with different volumes of

AgNO3 (10 mM).
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Fig. S7. (A) SERS spectra of Au@AgNR with different concentrations of 2-Mpy. (B) Signal

intensities of 2-Mpy characteristic peak at 1002 cm™! from the data in (A).
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Fig. S8. (A) SERS spectra of 6x107 M 2-Mpy molecules in Au@AgAgNR with different volume
of AgNO3 (10 mM). (B) Signal intensities of 2-Mpy characteristic peak at 1002 cm™® from the
data in (A). (C) Normalized UV-vis absorption spectra of the Au@AgAgNR with different
volumes of AgNO; (10 mM).
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Fig. S9. Bar graphs showing the LOD of HPV-16 assay. The dashed lines indicate the threshold
(Blank + 3SD).
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Fig. S10. (A) SERS spectra of 2-Mpy for quantitative evaluation of HPV-16 with different
concentrations using Au@AgNR nanotags. (B) Plot of change in Raman intensity at 1002 cm™
as a function of the logarithm of HPV-16 concentration is nonlinear from 10 fM to 10 nM
using Au@AgNR nanotags. (C) Comparison of signal intensities of 2-Mpy characteristic peak
at 1002 cm for quantitative evaluation of HPV-16 with different concentrations using

Au@AgNR and Au@AgAgNR nanotags, respectively.
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Fig. S11. (A) SERS spectra of 2-Mpy collected at 10 randomly selected spots on the sandwich-
type complexes. (HPV-16: 100 pM). (B) Signal intensities of 2-Mpy characteristic peak at 1002

cm® from the data in (A).
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Fig. S12. (A) The SERS spectra of 2-Mpy within 24 h (HPV-16: 100 pM). (B) Signal intensities of

2-Mpy characteristic peak at 1002 cm! from the data in (A).
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Fig. S13. (A) The SERS spectra of 2-Mpy over a 7-day period (HPV-16: 100 pM). (B) Signal

intensities of 2-Mpy characteristic peak at 1002 cm™ from the data in (A).

Table S1. Sequences of oligonucleotides used in this work.

Oligonucleotides Sequences (5'-3')

HPV-16 TCTGAAGTAGATATGGCAGCACATAATGAC
DNA1 SH-(CHZ) ¢ TTTTTTTTTTGTCATTATGTGCTGC
DNA2 CATATCTACTTCAGATTTTTTTTIT '(CHz) G-biotin

HPV-18 TGCCCAGGTACAGGAGACTGTGTAGAAGCA

HPV-52 TTTATATGTGCTTTCCTTTTTAACCTCAGCA

A mismatch TCTGAAGAAGATATGGCAGCACATAATGAC
G mismatch TCTGAAGGAGATATGGCAGCACATAATGAC

C mismatch TCTGAAGCAGATATGGCAGCACATAATGAC




Table S2. Comparison of different nanomaterial-based methods for the detection of
oligonucleotides

Detection method Nanomaterial Detection range LOD Refzrenc
SERS Au NPs 1 nM ~ 100 nM 1nM 1
SERS Au@Ag-tGO-Au@Ag 0~1nM 10 pM 2
SERS pA-nF-NTs-MMPs 10 pM ~ 100 nM 0.18 pM 3
SERS Au-Ag nanomushrooms-MMPs 10 fM ~ 100 pM 10 fM 4
SERS Au-RNNPs@Ag-HMSs 10 fM ~ 100 nM 10 fM 5
SERS Au@PMPs 20 nM ~ 100 nM 10 fM 6
SERS Au island@glass 1fM~ 10 nM 1fM 7
SERS AgNPs@Si 1fM ~ 100 pM 1fM 8
SERS Fes0,@Ag NPs 0~1nM 0.3 fM 9
SERS Au NPs-MB 1fM ~ 100 nM 0.17 fM 10
SERS DIP-MMPs 10aM ~ 1 pM 10 ~100 aM 11
PCR-SERS Ag colloids 1 pM ~ 100 pM 10 pM 12
Colorimetry Ag NPs 20 nM ~ 2500 nM 1.03nM 13
SERS Au@AgAgNR-MBs 1fM~10nM 1fMm This work
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