Electronic Supplementary Information for:

Near-Infrared Fluorescence Probe for Hydrogen Peroxide Detection: Design, Synthesis, and Application in Living Systems

Jiahang Zhang^a,[†] Liang Shi^b,[†] Zhao Li^{a,*}, Dongyu Li^a, Xinwei Tian^a and Chengxiao Zhang^{b,*}

^a Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710062, China ^b Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China.

[†] Authors contributed equally.

* To whom correspondence should be addressed.

```
E-mail: lizhao0309@snnu.edu.cn (Z Li)
```

Table of contents

- 1. Synthesis of probe 1
- 2. Electrospray ionization mass spectrum of the reaction solution of 1
- 3. Fluorescence kinetic curves of 1 reacting with H_2O_2
- 4. Effects of pH and temperature
- 5. Cytotoxicity assay
- 6. Relative pixel intensity measurements in HepG2 cells and mice

Fig. S2 ¹³C NMR spectrum of 1 in CD₃OD.

Fig. S3 ESI-MS of the probe 1

2. Electrospray ionization mass spectrum of the reaction solution of 1

Fig. S4 ESI-MS of the reaction solution of 1 (20 μ M) with H₂O₂ (80 μ M).

3. Fluorescence kinetic curves of 1 reacting with H₂O₂

Fig. S5 Plots of fluorescence intensity of $1(10 \ \mu\text{M})$ vs.the reaction time in the presence of varied concentrations of H₂O₂ (from bottom to top): 0 (control), 10, 40, 60 and 80 μ M.The measurements were performed at 37 °C in 10 mM PBS (pH 7.4) with λ ex/em= 670/708 nm.

4. Effects of pH and temperature

Fig. S6 Effects of pH on the fluorescence of 10 μ M 1 (a) before and (b) after reaction with H₂O₂ (60 μ M). The results are the mean \pm standard deviation of three separate measurements; λ ex/em= 670/708 nm.

Fig. S7 Effects of temperature on the fluorescence of 10 μ M 1 (a) before and (b) after reaction with H₂O₂ (60 μ M).The results are the mean \pm standard deviation of three separate measurements; $\lambda ex/em = 670/708$ nm.

5. Cytotoxicity assay

Fig. S8 Effects of (A) probe 1 and (B) fluorophore 2 with varied concentrations (10 μ M) on the viability of HepG2 cells. The viability of the cells without probe 1 or fluorophore 2 is defined as 100%. The results are the mean ± standard deviation of six separate measurements.

6. Relative pixel intensity measurements in HepG2 cells and mice

Fig. S9 Relative pixel intensity measurements obtained from the images of HepG2 cells: (a) HepG2 cells were incubated with only 10 μ M probe 1 for 30 min. On the basis of the (a) group, then the HepG2 cells were incubated with 50 μ M H₂O₂ for (b) 10 min. (c) 20min. (d) 30min. The results are the mean \pm standard deviation of three separate measurements.

Fig. S10 Relative pixel intensity measurements obtained from the images of HepG2 cells: (a) HepG2 cells incubated with only probe **1** (10 μ M) for at 37 °C for 30 min; (b) HepG2 cells incubated with rotenone (100 nM) at 37 °C for 30 min and then further incubated with probe **1** (10 μ M) for 30 min; (c) HepG2 cells incubated with rotenone (100 nM) at 37 °C for 30 min, then incubated with NAC (20 mM) for another 30 min, and further incubated with probe **1** (10 μ M) for 30 min. The strongest fluorescence intensity from the image of cells incubated with rotenone (100 nM) at 37 °C for 30 min and then further incubated with rotenone (100 nM) at 37 °C for 30 min. The strongest min and then further incubated with probe **1** (10 μ M) for 30 min. The strongest min and then further incubated with probe **1** (10 μ M) for 30 min. The results are the mean ± standard deviation of three separate measurements.

Fig. S11 Relative pixel intensity measurements obtained from the images of mice: (a) The mouse was given an injection of Probe **1** (200 μ M, 100 μ L) into the peritoneal cavity; (b) The mouse was pretreated with rotenone (2.5 mM, 100 μ L) and followed by injection of Probe **1** (200 μ M, 100 μ L) at the same region after 1 h; (c) The mouse was successively treated with rotenone (2.5 mM,100 μ L) for 1 h, and Probe **1** (200 μ M, 100 μ L) at the same position. The strongest fluorescence intensity from the image of the mouse was pretreated with rotenone (2.5 mM, 100 μ L) and followed by injection of Probe **1** (200 μ M, 100 μ L) at the same position. The strongest fluorescence intensity from the image of the mouse was pretreated with rotenone (2.5 mM, 100 μ L) and followed by injection of Probe **1** (200 μ M, 100 μ L) at the same region after 1 h is defined as 1.0. The results are the mean ± standard deviation of three separate measurements.