1	Reversed-phase/hydrophilic bifunctional interaction mixed-mode								
2	monolithic column with biphenyl and quaternary ammonium								
3	stationary phases for capillary electrochromatography								
4									
5	Zhenkun Mao ^{1,2} , Changjun Hu ¹ , Zhentao Li ¹ , Zilin Chen ^{1,2} *								
6	1. Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry								
7	of Education, and Wuhan University School of Pharmaceutical Sciences,								
8	Wuhan, 430071, China								
9	2. State Key Laboratory of Transducer Technology, Chinese Academy of								
10	Sciences, Beijing 10080, China								
11									
12									
13									
14									
15									
16 17 18 19 20 21 22	Corresponding author Dr. Zilin Chen Luojia Chair Professor Vice Dean and Institute Director School of Pharmaceutical Sciences, Wuhan University Wuhan, 430071								
23	CHINA								
24	Phone: 86-27-68759893								
25	Fax: 86-27-68759850								
26	Email: <u>chenzl@whu.edu.cn</u>								
27									
28									

30 Fig. S1. Characterization of SEM for the monoliths (column No. 7: E, 750 ×; e, 3000
31 ×. Column No. 8: F, 750 ×; f, 3000 ×.).

Fig. S2. FT-IR spectra of the poly(VBP-*co*-EDMA-*co*-VBTA) monolith (column No.
5).

- 41 Fig. S3. Influence of pH (A), buffer concentration (B), ACN content (C) in RP-mode
 42 to the EOF mobility on monolithic column No. 5. Experimental conditions: mobile
 43 phase, (A) 10 mM phosphate buffer (pH 2.0–12.0) with 55% ACN, (B) pH 4.0
 44 phosphate buffer (5.0–25.0 mM) with 55% ACN, (C) phosphate buffer (10 mM, pH
- 45 4.0) with different content ACN; applied voltage, 20 kV; electrokinetic injection, -
- 46 5 kV \times 5 s; detection wavelength, 214 nm; EOF marker, DMF.

Fig. S4. Influence of pH (A), buffer concentration (B), ACN content in HILIC-mode 49 (C) to the EOF mobility on monolithic column No. 5. Experimental conditions:

50 mobile phase, (A) 10 mM phosphate buffer (pH 2.0–12.0) with 92% ACN, (B) pH 4.0 51 phosphate buffer (5.0–25.0 mM) with 92% ACN, (C) phosphate buffer (10 mM, pH 52 4.0) with different content ACN; applied voltage, – 20 kV; electrokinetic injection, – 53 5 kV × 5 s; detection wavelength, 214 nm; EOF marker, acetophenone. 54

55 56

Fig. S5. Effect of linear velocity of mobile phase on the plate height of the monolithic column (No. 5). Experimental conditions: mobile phase, 55% ACN in pH 4.0 10 mM phosphate buffer; applied voltage, from -12 kV to -25 kV; electrokinetic injection, 60 - 5 kV \times 5 s; detection wavelength, 214 nm. Marker: benzene.

	Monomers/porogens (wt%)	Monomers			Porogens		Backpressure	Permeability
Column		4-Vinylbiphenyl (wt%)	VBTA (wt%)	EDMA (wt%)	Cyclohexanol (wt%)	Dodecanol (wt%)	(MPa)	(10^{-14} m^2)
1	15:85	0	6	9	42.5	42.5	0.7	3.28
2	15:85	2.2	3.8	9	42.5	42.5	0.3	6.97
3	15:85	3	3	9	42.5	42.5	0.5	4.18
4	15:85	3.8	2.2	9	46.8	38.2	1.2	1.74
5	15:85	3.8	2.2	9	42.5	42.5	0.8	2.61
6	15:85	3.8	2.2	9	38.2	46.8	0.5	4.18
7	15:85	4.6	1.4	9	42.5	42.5	2.2	0.95
8	20:80	5	3	12	40	40	Blocked	_

Compositions of the polymerization mixtures for the poly(VBP-co-EDMA-co-VBTA) monoliths.

"-" is no detection.

Analytaa	Time (RSDs%)					
Analytes	Intra-day $(n = 5)$	Inter-day $(n = 5)$	Column-to-column $(n = 3)$	Batch-to-batch $(n = 3)$		
DMF	0.92	1.23	1.86	1.16		
Benzene	1.76	2.18	2.29	1.85		
Toluene	1.82	2.26	2.93	2.72		
Ethylbenzene	1.97	2.87	3.76	3.29		
Propylbenzene	2.87	3.92	4.13	3.81		
Butylbenzene	3.79	4.68	4.66	4.53		

Intra-day and inter-day (n = 5), column-to-column and batch-to-batch (n = 3) RSDs of the monolithic column (No. 5) for separation of five alkylbenzenes under RPLC mode. The experimental conditions are same as Fig. 3.

Intra-day and inter-day (n = 5), column-to-column and batch-to-batch (n = 3) RSDs of the monolithic column (No. 5) for separation of 6hydroxypurine and 2,6-dihydroxypurine under HILIC mode. The experimental conditions are same as Fig. 8.

Analytas	Time (RSDs%)						
Analytes	Intra-day $(n = 5)$	Inter-day $(n = 5)$	Column-to-column $(n = 3)$	Batch-to-batch $(n = 3)$			
Acetophenone	1.02	0.98	1.39	1.13			
6-Hydroxypurine	1.28	0.93	1.89	3.61			
2,6-Dihydroxypurine	2.71	2.02	3.36	4.06			

Comparison of different mixed-mode monolithic columns.

Stationary phases	Mixed-mode	Analytical method	Analytes	Elution time (min)	column efficiency (N/m)	Ref.
Poly(<i>p</i> -MAPHA- <i>co</i> -PETA)	RPLC/HILIC/IEC	cLC	PAHs, nucleosides, basic compounds	25	0.76 × 10 ⁵	[7]
Poly(DASP-co-PETA)	RPLC/HILIC	cLC	Acidic and basic compounds, alkylbenzenes	25	0.97× 10 ⁵	[8]
Sil-G4-BDDE-DA	RPLC/HILIC/IEC	LC	Alkylbenzenes, PAHs, nucleobases, nucleosides	120	_	[9]
Long-alkyl-chain-based hybrid monoliths	RPLC/IEC	CEC	Alkylbenzenes, aromatic amines	12	1.15 × 10 ⁵	[11]
Quinine-modified poly(GMA-co-EDMA) monoliths	RPLC/IEC	CEC	Alkylbenzenes, PAHs acidic compounds, excitants	17	1.90 × 10 ⁵	[15]
poly(VBP- <i>co</i> -EDMA- <i>co</i> - VBTA) monoliths	RPLC/HILIC	CEC	Vanillin substances, neutral and alkaline compounds	9	3.49 × 10 ⁵	This work

"-" No data.