Supplementary Information

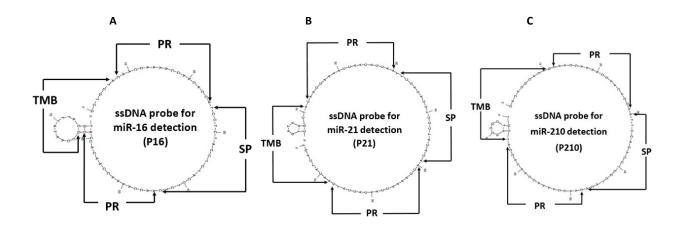
Ultrasensitive detection of lung cancer-associated miRNAs by multiple primers-mediated rolling circle amplification coupled with a graphene oxide fluorescence-based (MPRCA-GO) sensor

Krissana Khoothaim^{a,b,c}, Kiatnida Treerattrakoon^d, Tawin Iempridee^d, Patraporn Luksirikul^{e,f}, Tararaj Dharakul^{*b} and Deanpen Japrung^{*d}

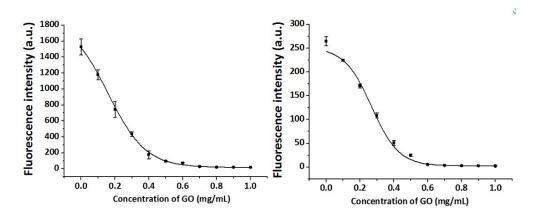
^a Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.

b. Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand

^{c.}Division of Microbiology and Parasitology, School of Medical Science, University of Phayao, Phayao, Thailand


^d National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani, Thailand

e-Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand


^{f.}Center for Advanced Studies in Nanotechnology for Chemical, Food and Agricultural Industries, KU Institute for Advanced Studies, Kasetsart University, Bangkok, Thailand

*Corresponding author: Deanpen Japrung Email address: deanpen@nanotec.or.th

*Corresponding author: Tararaj Dharakul Email address: tararaj.dha@mahidol.ac.th

Fig. S1 Secondary structure of ssDNA probe for miR-16 (A), miR-21 (B) and miR-210 (C) detection predicted by using Mfold software analysis. TMB, PR and SP represent target miRNA binding site, primer binding region and signaling probe identical sequence, respectively.

Fig.S2 Effect of GO concentration on the fluorescence intensity of fluorescence labelled ssDNA tag. (A) and (B) are the fluorescence intensity of Cy5-FP and ROX-FP, respectively, in the presence of GO concentration between 0 and 1 mg/mL. The fluorescence spectra of Cy5 and ROX were individually excited and emitted at 630/670 nm and 570/610 nm, respectively.

Table S1. Comparison of sensitivity by different isothermal miRNA detection methods

Limit of detection	Linear rang	Detection methods	References
0.4 pM	1 fM - 50 pM	RCA combined with GO-based fluorometric assay	Hong et al. (2016) ¹
0.38 pM	1 pM - 10 nM	Hairpin probe-mediated circular exponential isothermal amplification (EXPAR)	Wang and Zhang (2012) ²
290 fM	0.5 pM - 12.5 nM	Electrochemical biosensor coupled with hairpin probemediated RCA	Li et al. (2018) ³
10 fM	0.025 - 1 pM	Branched-RCA (BRCA)	Cheng et al. (2009) ⁴
10 fM	0.2 fM - 1 nM	Hairpin probe-mediated RCA	Li et al. (2013) ⁵
1.67 fM	5 fM - 50 pM	Electrochemiluminescent biosensor coupled with hybridization chain reaction and hemin	Zhang et al. (2014) ⁶
1 fM	1 fM - 100 nM	Ramification amplification (RAM)	Yao et al. (2009) ⁷
0.87 fM	1 fM - 10 pM	MPRCA coupled with GO-sensing biosensor	This study
0.68 fM	1 fM - 1 pM	RCA-mediated DNA machine	Zhuang et al. (2014) ⁸
0.02 fM	0.02-75 fM	BRCA combined with bioluminescent pyrophosphate detection	Mashimo et al. (2011) ⁹

References

- 1. C. Hong, A. Baek, S. S. Hah, W. Jung and D. E. Kim, Anal Chem, 2016, 88, 2999-3003.
- 2. G.-l. Wang and C.-y. Zhang, Analytical Chemistry, 2012, 84, 7037-7042.
- 3. Q. Li, F. Zeng, N. Lyu and J. Liang, *Analyst*, 2018, **143**, 2304-2309.
- 4. Y. Cheng, X. Zhang, Z. Li, X. Jiao, Y. Wang and Y. Zhang, *Angewandte Chemie* (International ed. in English), 2009, **48**, 3268-3272.
- 5. Y. Li, L. Liang and C.-y. Zhang, *Analytical Chemistry*, 2013, **85**, 11174-11179.
- 6. P. Zhang, X. Wu, Y. Chai and R. Yuan, Analyst, 2014, 139, 2748-2753.
- 7. B. Yao, J. Li, H. Huang, C. Sun, Z. Wang, Y. Fan, Q. Chang, S. Li and J. Xi, Rna, 2009, 15, 1787-1794.
- 8. J. Zhuang, W. Lai, G. Chen and D. Tang, Chemical communications (Cambridge, England), 2014, 50, 2935-2938.
- 9. Y. Mashimo, M. Mie, S. Suzuki and E. Kobatake, Analytical and Bioanalytical Chemistry, 2011, 401, 221-227.