Supporting Information for

Electronically-tuned Triarylmethine Scaffold for Fast and Continuous Monitoring of H₂S Levels in Biological Samples

Ramshad Kalluruttimmal,^a Divya Thekke Thattariyil,^b Archana Panthalattu Parambil,^a Ashis Kumar Sen, ^c Lakshmi Chakkumkumarath * ^b and Muraleedharan Kannoth Manheri * ^a

^a Department of Chemistry, Indian Institute of Technology Madras

Chennai-600036, Tamil Nadu, India

e mail: mkm@iitm.ac.in

^b Department of Chemistry, National Institute of Technology Calicut

Calicut-673601, Kerala, India

e mail: lakshmic@nitc.ac.in

^c Mechanical Engineering, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.

Table of contents

Page Number

1.	Sensitivity of different triarylmethine dyes towards hydrogen sulfide	3-4
2.	Change in absorbance of triarylmethine dyes on reaction with two equivalents of H_2S	5
3.	Response towards different anions	6
4.	Effect of high bicarbonate and chloride concentrations on the absorption profile of 2b	7
5.	Reactivity of $Na_2S_2O_3$, $Na_2S_2O_5$, Na_2S and Na_2SO_3 with compounds 2b and 2c	8
6.	Decolourisation and dye-regeneration steps involving 2c	8
7.	Time required for the regeneration of absorbance of $\mathbf{2b}$ in presence of $ZnCl_2$ and $CdCl_2$	9
8.	Decolourisation and regeneration steps involving 2b in saline condition (pH 6.8)	9
9.	Effect of substitution on ring A on the absorption maxima of triarylmethine derivatives	10
10.	Effect of increasing concentration of albumin on the absorption profile of 2b	11
11.	Change in absorbance of 2b on treating Na ₂ S and CdCl ₂ alternately	11
12.	Effect of polysulfide on the absorbance profile of 2b	12
13.	Reaction involved in the regeneration step	12
14.	Details of precision, accuracy, robustness etc.	13-15
15.	Spectral data of 1b- h and 2b- h	16-17
16.	¹ H & ¹³ C NMR spectra of 1b-h and 2b-h	18-31
17.	Mass spectra of compounds 2b-2h	32-35

1. Sensitivity of different triarylmethine dyes towards hydrogen sulfide

Figure S1. Change in absorbance of triarylmethine dyes on adding increasing amounts of H₂S.

Optimal probe concentrations for analysis and storage:

By studying different probe concentrations, we have found that if the water content is more than 98% there is a chance of small precipitation which leads to decrease in absorbance over a period of time. So, it is best to prepare the 1 mM stock solution in 1:1 ACN-Water mixture which gives same absorbance for extended period of time (monitored for a week). From this, aliquots can be withdrawn on requirement just before analysis as described in the manuscript)

2. Change in absorbance of triarylmethine dyes on reaction with two equivalents of H_2S

Figure S2. The decrease in absorbance of compounds 2a-h on reaction with two equiv. of Na₂S

3. Response towards different anions

Figure S3. Change in the absorbance of a) compound **2b** (40 μ M) and b) **2c** (30 μ M) in presence of various analytes (10 mM)* in water-AcCN mixture (9:1 v/v, pH 7.4 at 25°C; *concentrations of N₃⁻, CO₃²⁻ and OH⁻ taken were 1 mM each).

4. Effect of high bicarbonate and chloride concentrations on the absorption profile of 2b.

Figure S4. a) Absorbance of **2b** in presence of 30 mM concentration of bicarbonate at different time points. b) Corresponding spectra after treating with chloride ions at 100 mM concentration.

Figure S5. The absorption spectra of compounds a) **2b** (40 μ M) and b) **2c** (50 μ M) in presence of analytes such as Na₂S₂O₃, Na₂S₂O₅, Na₂S and Na₂SO₃ (20 μ M).

6. Decolourisation and dye-regeneration steps involving 2c

Figure S6. a) Time-dependent changes in the absorption spectra of compound 2c in presence of H₂S and b) time-dependent changes in absorption spectra of 2c-H₂S adduct on treatment with CdCl₂.

7. Time required for the regeneration of absorbance of 2b in presence of $ZnCl_2$ and $CdCl_2$

Figure S7. Time-dependent desulfuration of 2b-H₂S adduct with a) ZnCl₂ and b) CdCl₂

8. Decolourisation and regeneration steps involving 2b in saline condition (pH 6.8)

Figure S8. a) Change in the absorbance profile of 2b (40 μ M) in saline with increasing H₂S concentration. b) Linear change in absorbance due to dye regeneration on treatment with CdCl₂ (200 μ M).

9. Effect of substitution on ring A on the absorption maxima of triarylmethine derivatives.

Figure S9. Shift in absorbance maximum of triarylmethine derivatives with change in substitution on ring A (concentrations of dyes as indicated in Figure S1)

10. Effect of increasing concentration of albumin on the absorption profile of 2b

Figure S10. Absorbance of 2b (25 μ M) in presence of varying concentrations of albumin.

11. Change in absorbance of **2b** on treating Na₂S and CdCl₂ alternately

Figure S11. Absorbance spectra of **2b** (40 μ M) on treatment with Na₂S and CdCl₂ solutions alternately at the concentrations indicated in the figure

12. Effect of polysulfide on the absorbance profile of 2b

Figure S12. I. a) Time-dependant absorbance change of 2b (40 μ M); b&c) Change in the absorbance profile of **2b** (40 μ M) on addition of K₂S_x (1 mM) is shown in (b), whereas (c) shows that CdCl₂ treatment doesn't lead to dye-regeneration in this case; d) shows the response from 100 mM concentration of K₂S_x. e) the response from Na₂S (100 μ M) is notably different and is included for comparison. The corresponding UV-Vis spectras are presented in **II**.

13. Reaction involved in the regeneration step

2b-SH + CdCl₂ \longrightarrow [**2b**⁺][Cl⁻] + CdS + HCl

Figure S13. Scheme shows the reaction between sulfide adduct of 2b with CdCl₂

14. Details of precision, accuracy, robustness etc.

Precision

The precision of a method is the closeness of independent test outcomes obtained under optimal conditions. Three different concentrations of Na₂S in the linear range (10, 20 and 30 μ M) were analyzed in 3 independent runs in the same day (intra-day precision) and 3 successive days (inter-day precision) from three measurements of each sample. The precision of the analysis was determined by calculating the relative standard deviation (RSD %). The RSD values of intra-day and inter-day studies differ from 1.00 to 1.57 in buffer and 1.47 to 2.87 in plasma respectively. The intermediate precision of the method was satisfactory (ESI-Table 1).

(Buffer)	Intra-day precision			Inter-day precision		
Concentration (µM)	Absorbance measured	% RSD	± SE	Absorbance measured	% RSD	± SE
	$(Mean \pm SD)$			$(Mean \pm SD)$		
10	0.0938 ± 0.00094	1.00	0.054	0.0887 ± 0.00111	1.24	0.06
20	0.1891 ± 0.00195	1.03	0.113	0.1816 ± 0.00188	1.04	0.11
30	0.2909 ± 0.00314	1.08	0.18	0.2756 ± 0.00433	1.57	0.25
(Plasma)	Intra-day precis	sion		Inter-day precision		
					•	
Concentration (µM)	Absorbance measured	% RSD	± SE	Absorbance measured	% RSD	± SE
Concentration (µM)	Absorbance measured (Mean ± SD)	% RSD	± SE	Absorbance measured (Mean ± SD)	% RSD	± SE
Concentration (µM) 10	Absorbance measured (Mean \pm SD) 0.1851 ± 0.00404	% RSD	± SE	Absorbance measured (Mean \pm SD) 0.1558 ± 0.00447	% RSD	± SE
Concentration (µM) 10 20	Absorbance measured (Mean \pm SD) 0.1851 \pm 0.00404 0.2535 \pm 0.00625	% RSD 2.18 2.46	± SE 0.23 0.36	Absorbance measured (Mean \pm SD) 0.1558 ± 0.00447 0.2323 ± 0.00620	% RSD 2.87 2.67	± SE 0.25 0.35

ESI-Table 1.	Intra-day and inter-day precision determin	ed for different concentrations (10 µM,
20 µM and 30) μM) of analyte.	

* Standard deviation (SD) = square root of $\sum (m-i)^2/n-1$ (m is the mean)

* Percentage relative standard deviation, $%RSD = 100_*(SD/m)$

* Standard error (SE) = Standard deviation/ \sqrt{n}

Accuracy and recovery

Accuracy was determined based on data obtained for three different concentrations (n = 3) and the value is expressed as percentage of recovery between the mean concentrations of the analyte recovered and that of the original. The average recoveries were found to be as 100.6%, 99.2% and 100.7% in buffer and 101.4%, 101.7% and 98.6 in plasma for the concentration levels of 15, 20, 25 μ M respectively (ESI-Table 2). Also the percentage relative error was less than 0.80 in buffer and 1.75 in plasma respectively.

(Buffer)	Concentration(µM)	% Average recovery	% Relative error
		(r)	(δ)
Amount added [C]	Amount Found ($[C]^{#} \pm SD$)		
15	15.09 ± 0.1496	100.6	0.60
20	19.84 ± 0.1557	99.2	0.80
25	25.18 ± 0.1584	100.7	0.72
(Plasma)			
15	15.21 ± 0.5391	101.4	1.40
20	20.35 ± 0.8083	101.7	1.75
25	24.66 ± 0.8513	98.6	1.36

ESI-Table 2. Determination of accuracy of data using 2b and the percentage recovery

% Average recovery (r) = $100_{*}[C]^{\#}/[C]$

% Relative error (δ) =100*([C] [#]- [C])/[C]

Robustness

Robustness of the method was assessed by taking measurements at slightly different wavelengths for detection and quantification (636 nm and 640 nm). All parameters except the wavelength were made constant during this study. Seven independent measurements using a 20 μ M Na₂S solution was done at both these wave lengths. The statistical comparison was done with Friedman analysis and no significant difference was found between the results (p = 0.087 > p = 0.05 in buffer and p= 0.7055 > p=0.05 in plasma) (ESI-Table 3).

(Buffer) Solution	Found, (µM)	% RSD	
Standard, 20 (µM) at 638 nm	20.61±0.2223	1.07	
Wavelength, 636 nm	20.63±0.2944	1.43	
Wavelength, 640 nm	21.04±0.3123	1.48	
Friedman analysis: $p = 0.0878 > p = 0.05$			
(Plasma) Solution	Found, (µM)	% RSD	
Standard, 20 (µM)	20.81±0.3041	1.46	
Wavelength, 636 nm	20.85±0.4131	1.98	
Wavelength, 640 nm	21.27±0.3414	1.60	
	Friedman analysis: p = 0.705	55 > p = 0.05	

ESI-Table 3. The robustness data of current method (n=7).

(ref. G. L. Long and J. D. Winefordner, Anal. chem., 1983, 55, 712)

Spectral data of 1 b- h and 2 b- h

1b: Yield, 92%; R_f (5% EtOAc-Hexane), 0.36; mp 144–146 °C; IR (KBr) v_{max} 3000, 2793, 1884, 1607, 1516, 1443, 1336 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.12-8.10 (2H, d, J = 8.48 Hz), 7.30-7.28 (2H, d, J = 8.45 Hz), 6.95-6.93 (4H, d, J = 8.15 Hz), 6.68-6.66 (4H, d, J = 8.15 Hz), 5.45 (1H, s), 2.93 (12H, s) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 153.6, 149.4(2C), 146.3, 131.1(2C), 130.2(2C), 129.9(4C), 123.5(2C), 112.7(4C), 55.1, 40.7(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₃H₂₆N₃O₂ [M+H]⁺ 376.2042, found 376.2032.

1c: Yield, 93%; R_f (5% EtOAc-Hexane), 0.32; mp 160–162 °C; IR (KBr) v_{max} 3000, 2796, 1880, 1607, 1516, 1445, 1344 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 8.64 (1H, s), 8.27-8.25 (1H, d, *J* = 8.60 Hz), 7.40-7.37 (1H, d, *J* = 8.60 Hz), 6.90-6.88 (4H, d, *J* = 8.45 Hz), 6.66-6.63 (4H, d, *J* = 8.45 Hz), 6.11 (1H, s), 2.92 (12H, s) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 149.6(2C), 147.3, 146.1, 133.4, 130.1(4C), 128.9(2C), 126.1, 120.1(2C), 112.7(4C), 50.0, 40.6(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₃H₂₅N₄O₄ [M+H]⁺ 421.1875, found 421.1843.

1d: Yield, 90%; R_f (5% EtOAc-Hexane), 0.36; mp 132–134 °C; IR (KBr) v_{max} 3004, 2884, 2804, 2074, 1888, 1614, 1520, 1484, 1443 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.55-7.53 (2H, d, *J* = 7.86 Hz), 7.25-7.23 (2H, d, *J* = 7.86 Hz), 6.94-6.92 (4H, d, *J* = 8.46 Hz), 6.68-6.65 (4H, d, *J* = 8.46 Hz), 5.40 (1H, s), 2.92 (12H, s) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 151.4, 149.4(2C), 132.1(2C), 131.2(2C), 130.2(2C), 129.9(4C), 119.3, 112.7(4C), 109.7, 55.2, 40.7(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₄H₂₆N₃ [M+H]⁺ 356.2126, found 356.2134.

1e: Yield, 86%; R_f (5% EtOAc-Hexane), 0.34; mp 130–132 °C; IR (KBr) v_{max} 3004, 2856, 2800, 1880, 1610, 1520, 1445 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.09-7.07 (2H, dd, J = 8.07 Hz & 2.05 Hz), 6.98-6.92 (6H, m), 6.68-6.66 (4H, d, J = 8.63 Hz), 5.36 (1H, s), 2.92 (12H, s) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 149.2(2C), 132.8, 130.9(2C), 130.8(4C), 129.9, 115.0(2C), 114.8(2C), 112.7(4C), 54.4, 40.8(4C) ppm; HRMS (ESI) exact mass calcd. for $C_{23}H_{26}FN_2$ [M+H]⁺ 349.2080, found 349.2085.

1f: Yield, 83%; R_f (5% EtOAc-Hexane), 0.32; mp 136–138 °C; IR (KBr) v_{max} 3004, 2800, 1884, 1610, 1516, 1347, 1221 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.40-7.38 (2H, d, *J* = 8.13 Hz), 7.04-7.02 (2H, d, *J* = 8.13 Hz), 6.98-6.96 (4H, d, *J* = 8.33 Hz), 6.69-6.67 (4H, d, *J* = 8.33 Hz), 5.34 (1H, s), 2.93 (12H, s) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 149.2(2C), 144.7, 132.2(2C), 131.2(4C), 129.9(2C), 129.5(2C), 119.8, 112.7(4C), 54.6, 40.8(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₃H₂₆BrN₂ [M+H]⁺ 409.1287, found 409.1276.

1g: Yield, 85%; R_f (5% EtOAc-Hexane), 0.39; mp 148–150 °C; IR (KBr) v_{max} 3004, 2884, 2800, 1880, 1610, 1520, 1445, 1344 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.05-7.03 (2H, d, *J* = 8.27 Hz), 6.99-6.96 (4H, d, *J* = 8.27 Hz), 6.81-6.79 (2H, d, *J* = 8.48 Hz), 6.68-6.65 (4H, d, *J* = 8.64 Hz), 5.33 (1H, s), 3.78 (3H, s), 2.91 (12H, s) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 157.8, 149.1(2C), 137.8, 133.4(2C), 130.4(2C), 130.0(4C), 113.6(2C), 112.7(4C), 55.4, 54.3, 40.9(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₄H₂₉N₂O [M+H]⁺ 361.2279, found 361.2261.

1h: Yield, 88%; R_f (5% EtOAc-Hexane), 0.38; mp 138–140 °C; IR (KBr) v_{max} 3000, 2881, 2800, 1884, 1610, 1516, 1445, 1344 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) δ 7.19-7.17 (2H, d, J = 8.32 Hz), 7.08-7.06 (2H, d, J = 8.32 Hz), 7.00-6.98 (4H, d, J = 8.66 Hz), 6.69-6.67 (4H, d, J = 8.66 Hz), 5.35 (1H, s), 2.92 (12H, s), 2.46 (3H, s) ppm; ¹³C NMR (CDCl₃, 100 MHz) δ 149.1(2C), 142.8, 135.4, 132.8(2C), 130.0(4C), 129.9(2C), 126.9(2C), 112.7(4C), 54.6, 40.8(4C), 16.3 ppm; HRMS (ESI) exact mass calcd. for C₂₄H₂₉N₂S [M+H]⁺ 377.2051, found 377.2060.

2d: Yield, 92%; R_f (5% MeOH-DCM), 0.56; mp 172–174 °C; IR (KBr) v_{max} 3004, 2881, 2804, 1880, 1614, 1520, 1445, 1351 cm⁻¹; ¹H NMR (CD₃OD, 500 MHz) δ 7.94-7.92 (2H, d, J = 8.64 Hz), 7.53-7.51 (2H, d, J 16

= 8.64 Hz), 7.42-7.40 (4H, d, J = 8.46 Hz), 7.07-7.06 (4H, d, J = 8.46 Hz), 3.34 (12H, s) ppm; ¹³C NMR (125 MHz, CD₃OD) δ 174.7(2C), 158.7, 141.6(4C), 135.7(2C), 133.3(2C), 131.3, 128.3(2C), 115.3(4C), 113.4, 41.1(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₄H₂₄N₃ [M]⁺ 354.1970, found 354.1979.

2e: Yield, 86%; R_f (5% MeOH-DCM), 0.38; mp 152–154 °C; IR (KBr) v_{max} 3007, 2891, 2804, 1884, 1610, 1526, 1347 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 7.28-7.22 (8H, m), 6.86-6.84 (4H, d, J = 8.66 Hz), 3.20 (12H, s) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 178.9(2C), 158.6, 141.9(4C), 141.1, 135.7(2C), 134.1, 129.7(2C), 128.5(2C), 114.8(4C), 40.9(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₃H₂₄FN₂ [M]⁺ 347.1923, found 347.1935.

2f: Yield, 89%; R_f (5% MeOH-DCM), 0.44; mp 146–148 °C; IR (KBr) v_{max} 3007, 2796, 1884,1618, 1505, 1351 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 7.79-7.74 (2H, d, J = 8.13 Hz), 7.44-7.42 (4H, d, J = 8.13 Hz), 7.29- 7.27 (2H, d, J = 8.33 Hz), 7.08-7.06 (4H, d, J = 8.33 Hz), 3.34 (12H, s) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 176.1(2C), 158.6, 141.8(4C), 140.0, 137.1(2C), 133.1(2C), 129.0, 128.3(2C), 114.9(4C), 40.9(4C) ppm; HRMS (ESI) exact mass calcd. for $C_{23}H_{24}BrN_2$ [M]⁺ 407.1122, found 407.1129.

2g: Yield, 91%; R_f (5% MeOH-DCM), 0.49; mp 188–190 °C; IR (KBr) v_{max} 3014, 2811, 1891, 1607, 1512,1347 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 7.43-7.41 (4H, d, J = 8.48 Hz), 7.37-7.35 (2H, d, J = 8.27 Hz), 7.18-7.16 (2H, d, J = 8.27 Hz), 7.05-7.03 (4H, d, J = 8.48 Hz), 3.96 (3H, s), 3.31 (12H, s) ppm; ¹³C NMR (100 MHz, CD₃OD) δ 179.7(2C), 166.4, 158.4, 141.9(4C), 138.9(2C),133.3, 128.3(2C), 115.6(2C), 114.4(4C), 56.5, 40.8(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₄H₂₇N₂O [M]⁺ 359.2156, found 359.2146.

2h: Yield, 92%; R_f (5% MeOH-DCM), 0.38; mp 158–160 °C; IR (KBr) v_{max} 2997, 2849, 2796, 1891, 1607, 1520, 1439, 1344 cm⁻¹; ¹H NMR (400 MHz, D₂O) δ 7.28-7.26 (2H, d, J = 8.27 Hz), 7.23-7.21 (4H, d, J = 8.27 Hz), 7.07-7.05 (2H, d, J = 8.48 Hz), 6.84-6.82 (4H, d, J = 8.48 Hz), 3.24 (12H, s), 2.55 (3H, s) ppm; ¹³C NMR (100 MHz, DMSO-d₆) δ 156.4, 140.1(4C), 135.2, 129.5(2C), 129.4(2C), 126.3, 125.9(2C), 124.9(2C), 113.8(4C), 53.6, 40.5(4C) ppm; HRMS (ESI) exact mass calcd. for C₂₄H₂₇N₂S [M]⁺ 375.1894, found 375.1951.

Figure S15. ¹³C NMR spectrum (100 MHz, CDCl₃) of the compound 1b

Figure S19. ¹³C NMR spectrum (100 MHz, CDCl₃) of the compound 1d

Figure S21. ¹³C NMR spectrum (100 MHz, CDCl₃) of the compound 1e

21

Figure S22. ¹H NMR spectrum (400 MHz, CDCl₃) of the compound 1f

Figure S23. ¹³C NMR spectrum (100 MHz, CDCl₃) of the compound 1f

Figure S25. 13 C NMR spectrum (400 MHz, CDCl₃) of the compound 1g

Figure S27. ¹³C NMR spectrum (400 MHz, CDCl₃) of the compound 1h

24

Figure S29. ¹³C NMR spectrum (100 MHz, CD₃OD) of the compound 2b

Figure S30. ¹H NMR spectrum (400 MHz, CD₃OD) of the compound 2c.

Figure S31. ¹³C NMR spectrum (100 MHz, CD₃OD) of the compound 2c

and the second second

Figure S33. ¹³C NMR spectrum (125 MHz, CD₃OD) of the compound 2d

Figure S35. ¹³C NMR spectrum (100 MHz, CD₃OD) of the compound 2e

Figure S36. ¹H NMR spectrum (400 MHz, CD₃OD) of the compound 2f

Figure S37. ¹³C NMR spectrum (100 MHz, CD₃OD) of the compound 2f

Figure S39. ¹³C NMR spectrum (100 MHz, CD₃OD) of the compound 2g

Figure S41. $^{\rm 13}{\rm C}$ NMR spectrum (100 MHz, DMSO-d_6) of the compound 2h

Mass spectra of compounds 2b-2h

