Colorimetric switchable linker-based bioassay for ultrasensitive detection of

prostate-specific antigen as a cancer biomarker

Jungwoo Hahn^{a†}, Eunghee Kim^{a†}, Youngsang You^d, Young Jin Choi^{a,b,c*}

^a Department of Agricultural Biotechnology, ^bCenter for Food and Bioconvergence, and ^cResearch

Institute of Agriculture and Life Sciences, Seoul National University, 1 Gwanakro, Gwanakgu,

Seoul 151-921, Korea

^d Department of Human Nutrition, Food and Animal Sciences University of Hawaii at Manoa

Honolulu, HI 96822-2321, USA

*Corresponding authors

Young Jin Choi

choiyj@snu.ac.kr

+82 2 880 4851

⁺These authors contributed equally to the work.

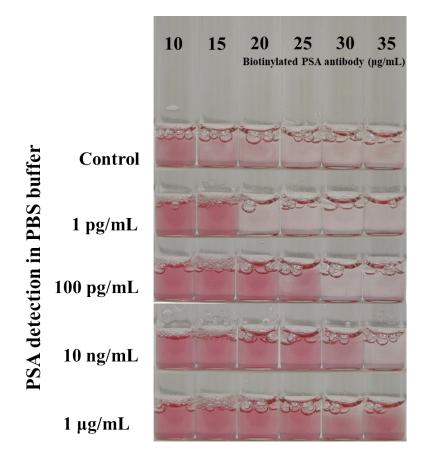


Fig. S1 REVC shifts to higher linker concentrations with the increase in PSA concentrations (from 1 pg/mL to 1 μ g/mL) by 100-fold to confirm the broad detection range of the SL-based immunoassay in PBS buffer.

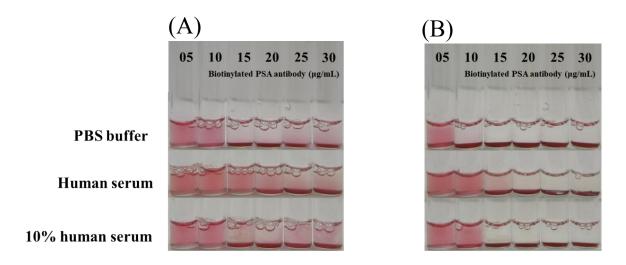


Fig. S2 The REVC difference in 3 control samples (PBS buffer, Human serum, and 10% human serum) after (A) 2 h and (B) overnight.

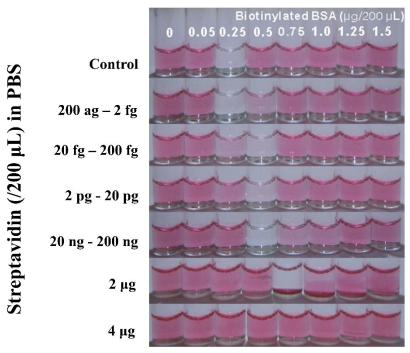


Fig. S3 Shift in REVC after 3 h of the SL-based assay for detecting streptavidin (from 200 ag/200 μ L to 4 μ g/200 μ L) in PBS buffer using a fixed concentration of stAuNPs (absorption :0.21 at 531.5 nm for 1/10 dilution sample).

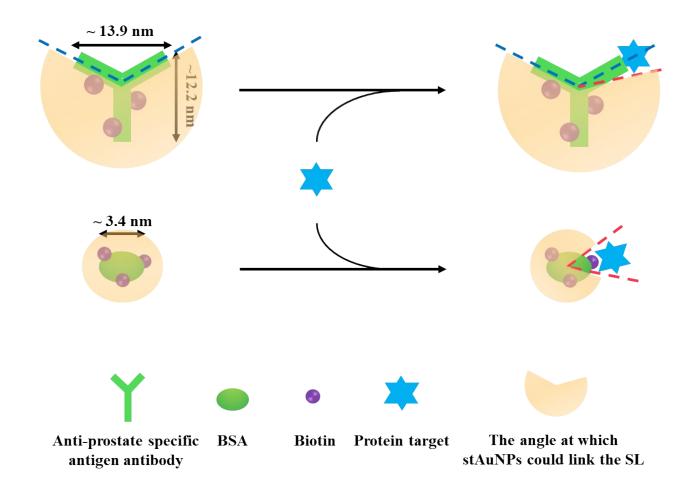


Fig. S4 Schematic representation of the physical difference between the switching off process in b-Ab and b-BSA. B-Ab has a determined target recognition site, whereas b-BSA has a target recognition site determined at random. Therefore, b-BSA is less affected by steric hindrance than b-Ab when bound to the stAuNPs in the switching-off situation.