Electronic Supplementary Information

Electrochemical sensing of cocaine in real samples based on electrodeposited biomimetic affinity ligands

Anca Florea^a, Todd Cowen^b, Sergey Piletsky^b, Karolien De Wael^{a*}

^a University of Antwerp, Department of Chemistry, Groenenborgerlaan 171, B-2020, Belgium

^b University of Leicester, Department of Chemistry, LE1 7RH, UK

*Corresponding author, e-mail address: karolien.dewael@uantwerpen.be

Table of contents

Monomer	Chemical structure	Binding energy (kJ mol ⁻¹)
Orto-phenylene-diamine	NH ₂	-190.12
Para-aminobenzoic acid		-114.99
Pyrrole carbohydrazide	H ₂ N O NH ₂	-110.71
Aniline	NH NH2	-104.39
Thioaniline	H ₂ N	-98.28
Pyrrole	NH	-57.97

Table S1. Hierarchy of relative binding energies for cocaine-electropolymerizable monomers screening.

The results of the computational modelling show that orto-phenylene-diamine and para-aminobenzoic acid are the best candidates for molecular imprinting having the highest affinity for cocaine binding and thus ensuring a high probability of imprinting success during polymerization. Experimental work performed with the two monomers in our previous work³⁷ showed that, eventhough orto-phenylene-diamine shows a higher binding score, from the application point of view in electrochemical sensors para-aminobenzoic acid shows better results in terms of cocaine peak current intensity, having a higher conductivity. Thus, para-amino-benzoic was selected as monomer for further experiments.