Electronic Supplementary Information (ESI)

Cu²⁺-modulated in situ growth of quantum dots for split-type photoelectrochemical immunoassay of prostate specific antigen

Yang Zang,^a* Yun Ju,^a Jingjing Jiang,^a* Qin Xu,^a Ming Chu^b and Huaiguo Xue^a

^a School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou,
 225002, Jiangsu, China.

^b The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210029, P. R. China

*Corresponding author. Tel.: +86-514-87975436 / Fax: +86-514-87975244.

E-mail address: zangyang@yzu.edu.cn, jjj@yzu.edu.cn.

Experimental section

Apparatus

Scanning electron micrograph (SEM) was characterized using S-4800 field emission scanning electron microscopy (Hitachi, Japan). Transmission electron micrographs (TEM) were performed by a Tecnai 12 microscope (Philips, Netherlands). UV–vis absorption spectra were obtained by a UV-2501PC spectrometer (Shimadzu Co. Kyoto, Japan). Fluorescence (FL) measurements were conducted on an F-4500 fluorescence spectrometer (Hitachi, Japan) equipped with a xenon lamp. X-ray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALAB 250Xi spectrometer (Thermo Fisher, USA) with an Al $K\alpha$ radiation source. Raman spectrum was performed by a DXRxi Micro Raman imaging spectrometer (Thermo Fisher, USA). Dynamic light scattering (DLS) spectrum was obtained via Nano-ZS90 light scattering instrument (Malvern, Britain). High mass accuracy ESI spectra were recorded on an ultrahigh-resolution ESI-Time-of-Flight with Bruker Daltonik maxis (Bremen, Germany). Incident-photon-to-current conversion efficiency (IPCE) data were measured in the wavelength range from 300 to 800 nm (Newport 94063, Stratford, CT, USA). Current-voltage (I-V) experiments were recorded by a CHI 660E electrochemical workstation (CH Instruments Inc., USA). Photoelectrochemical measurements were performed via a home-built PEC system with white light as an accessory excitation source. Electrochemical impedance spectroscopy (EIS) was tested using a PGSTAT30/FRA2 system (Autolab, The Netherlands). All experiments were carried out at room temperature using a conventional three-electrode system: a modified ITO electrode (4 mm in diameter) as the working, a platinum electrode as the auxiliary, and an Ag/AgCl as the reference electrodes.

Preparation of MoS₂ QDs

MoS₂ QDs were prepared by supersonic assisted liquid exfoliation technique.^{S1} Briefly, 300 mg of MoS₂ powder was dispersed into 100 mL ethanol/water solution (the volume fraction of water was 55%), and then sonicated for over 24 h. The above dispersion was centrifuged for 20 min thrice at 6000 rpm to remove the unexfoliated bulk MoS₂. The resulting supernatant was further collected via a vacuum-rotary evaporation procedure at 60 °C under reduced pressure. After being dissolved in deionized water and filtered by 0.22 μ m ultrafiltration membrane, the obtained aqueous solution of MoS₂ QDs was stored at 4 °C for next experiments.

Preparation of CuO-Ab₂ conjugates

CuO-Ab₂ conjugates were prepared according to a previous report.^{S2} Firstly, 1 mg of CuO NPs was dispersed into 1 mL of 0.01 M phosphate buffer saline (PBS) of pH 7.4 followed by ultrasonic treatment for 10 min, and vortexed the mixture for 3 h at 500 rpm after the addition of 500 μ L Ab₂ with a concentration of 0.048 mg mL⁻¹. Subsequently, the resulting solution was centrifuged for 10 min at 10000 rpm to remove the unlabeled Ab₂ in the supernatant, whereas the precipitated CuO-Ab₂ conjugates were redispersed in 1.5 mL PBS and centrifuged for 10 min again at 5000 rpm to rid the excess precipitate of CuO NPs. Finally, 200 μ L of 0.01 M PBS of pH 7.4 containing 10% BSA was added and vortexed for 30 min to stabilize the obtained CuO-Ab₂ solution, which was stored at 4 °C for further use.

Fig. S1 TEM images of (A) CuO NPs and (B) CuO-Ab₂ conjugates.

Fig. S2 EIS of bare ITO (a), MoS_2/ITO (b), and CdS/MoS_2/ITO (c) electrodes in 0.1 M Na_2SO_4 solution containing 5 mM [Fe(CN)₆]^{3-/4-}. The applied potential is 0.180 V with the signal amplitude of 5 mV, and the frequency range is 0.1 Hz–100 kHz. Inset: the electrical equivalent circuit applied to fit the impedance data; R_s , Z_w , R_{ct} , and CPE represent the Ohmic resistance of the electrolyte, Warburg impedance, charge-transfer resistance, and constant phase angle element, respectively.

Fig. S3 (A) Effect of Na₂S concentration on the photocurrent response of in situ generation CdS QDs-modified MoS₂/ITO electrode. (B) Effect of incubation time of PSA with Ab₁ on the photocurrent response of designed immunosensor in the presence of 10 ng mL⁻¹ PSA.

Detection method	Linear range (ng mL ⁻¹)	Detection limit (ng mL ⁻¹)	References
Electrochemistry	1.5×10 ⁻² - 8.0	1.7×10 ⁻³	S3
Electrochemistry	5.0×10 ⁻⁴ - 10	1.2×10 ⁻⁴	S4
Electrochemiluminescence	5.0×10 ⁻⁴ - 5.0	1.7×10 ⁻⁴	S5
Electrochemiluminescence	1.0×10 ⁻⁴ - 50	5.6×10 ⁻⁵	S6
Electrochemiluminescence	1.0×10 ⁻⁵ – 10	5.0×10 ⁻⁶	S7
Fluorescence	1.0×10 ⁻³ - 20	3.0×10 ⁻⁴	S8
Fluorescence	1.0×10 ⁻³ - 1.0	3.0×10 ⁻⁴	S9
Raman scattering	1.0×10 ⁻³ - 10	6.5×10 ⁻⁴	S10
Photoelectrochemistry	5.0×10 ⁻³ - 50	2.6×10-3	S11
Photoelectrochemistry	1.0×10 ⁻² - 20	3.8×10 ⁻³	S12
Photoelectrochemistry	5.0×10 ⁻⁴ - 10	2.9×10 ⁻⁴	This work

Table S1 Comparison of the analytical performance of various immunoassay methods forPSA detection.

 Table S2 Detection results and recoveries of PSA in human serum samples.

Sample	Reference method	Added	Proposed method	RSD	Recovery
	(ng mL ⁻¹)	(ng mL ⁻¹)	(ng mL ⁻¹)	(%, n=5)	(%, n=5)
1	0.54	0	0.50	7.12	-
		2.0	2.65	6.55	105.5
		4.0	4.63	5.82	102.3
		6.0	6.45	5.09	98.5
2	1.12	0	1.19	5.17	-
		2.0	3.07	4.19	97.5
		4.0	4.98	5.56	96.5
		6.0	7.19	6.05	101.2

References

- S1 K. G. Zhou, N. N. Mao, H. X. Wang, Y. Peng and H. L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 10839–10842.
- S2 Q. F. Xie, X. H. Weng, L. J. Lu, Z. Y. Lin, X. W. Xu and C. L. Fu, *Biosens. Bioelectron.*, 2016, 77, 46–50.
- S3 Y. X. Hao, P. D. Yan, X. Zhang, H. W. Shen, C. L. Gu, H. Q. Zhang, M. H. Zhang and H. Xiang, *Microchim. Acta*, 2017, **184**, 4341–4349.
- S4 X. Zhou, L. Yang, X. P. Tan, G. F. Zhao, X. G. Xie and G. B. Du, *Biosens*. *Bioelectron.*, 2018, **112**, 31–39.
- S5 J. Cao, J. J. Yang, L. Z. Zhao, Y. L. Wang, H. Wang, Y. M. Liu and S. H. Ma, *Biosens. Bioelectron.*, 2018, 99, 92–98.
- S6 L. Yang, Y. Y. Li, Y. Zhang, D. W. Fan, X. H. Pang, Q. Wei and B. Du, ACS Appl. Mater. Interfaces, 2017, 9, 35260–35267.
- S7 W. J. Zhu, M. S. Khan, W. Cao, X. Sun, H. M. Ma, Y. Zhang and Q. Wei, *Biosens. Bioelectron.*, 2018, 99, 346–352.
- S8 H. M. Pei, S. Y. Zhu, M. H. Yang, R. M. Kong, Y. Q. Zheng and F. L. Qu, *Biosens*. *Bioelectron.*, 2015, 74, 909–914.
- S9 L. F. Yang, N. Li, K. Wang, X. M. Hai, J. X. Liu and F. Q. Dang, *Talanta*, 2018, 179, 531–537.
- S10 L. L. Xie, X. Yang, Y. He, R. Yuan and Y. Q. Chai, ACS Appl. Mater. Interfaces, 2018, 10, 15200–15206.
- S11 X. P. Wang, R. Xu, X. Sun, Y. G. Wang, X. Ren, B. Du, D. Wu and Q. Wei, *Biosens. Bioelectron.*, 2017, 96, 239–245.
- S12 K. Y. Zhang, S. Z. Lv, Z. Z. Lin and D. P. Tang, *Biosens. Bioelectron.*, 2017, 95, 34–40.