A specific electrochemiluminescence sensor for selective and ultra-sensitive mercury(II) detection based on dithiothreitol functionalized copper nanoclusters/carbon nitride nanocomposite

Huitao Liu¹, Xueqing Gao¹, Xuming Zhuang^{1,3,*}, Chunyuan Tian¹, Zhenguang Wang^{2,*}, Yanxiu Li³, Andrey

L. Rogach^{3,4}

¹College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China

²College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China

³Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City

University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR

⁴Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China

*Corresponding author.

E-mail address: xmzhuang@iccas.ac.cn (X. Zhuang); wzg583@163.com (Z. Wang).

Fig. S1. Influence of the mass ratios of DTT-CuNCs and CNNS on the ECL intensity of resulting DTT-

CuNCs/CNNS nanocomposites.

Fig. S2. Histogram of the ECL intensity for the different concentration ratios of DTT-CuNCs and CNNS in the DTT-CuNCs/CNNS nanocomposite, as indicated above each bar.

Fig. S3. Raman spectra of CNNS (a), DTT-CuNCs (b) and DTT-CuNCs/CNNS (c), and the green encircled area in exemplified by an inset.

Fig. S4. The ECL intensity of proposed ECL sensor after immersion in the co-reactant at different times.

Fig. S5. The ECL decrement ($\Delta I = I_0 - I$) for the detection of 10 nM of Hg²⁺ at different pH of co-reactant. The pH value of co-reactant from left to right: 1.7, 3.5, 5.5, 7.4, 10, 12.5.

Fig. S6. The reproducibility of ECL sensor with six different electrodes.

Method	LOD	Reference	
AAS	0.01 µg L ⁻¹	3	
Fluorescence	1.5 nM	4	
AFS	1.4ng L ⁻¹	5	
ICP-MS	1.82 µg / g	6	
Ultraviolet spectrophotometry	10 nM	7	
Electrochemical	0.5 nM	8	
ECL	0.01 nM	This work	

 Table S1 Performance comparison for the ECL detection (using the DTT-CuNCs/CNNS sensor developed

 here) with several other commonly used methods for Hg²⁺ detection.