Supplementary Information

Label-free gold nanorod-based plasmonic sensing of arsenic(III) in contaminated water

Anindita Das,^a Sonali Mohanty,^a Bijoy Kumar Kuanr,*^a

a. Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi- 110067, India.

* Corresponding author: email: bkkuanr@gmail.com

Synthesis of polyethyleneimine functionalized cobalt ferrite nanoparticles

Polyethyleneimine (PEI)-functionalized cobalt ferrite nanoparticles were synthesized according to the method described by Chen, and co-workers with slight modification.¹ In brief, 20 mL of 1.8 M aqueous solution of NaOH was taken in a round-bottom flask and heated to 80 °C in an oil bath. Then an aqueous mixture of 5 mL 0.5 M CoCl₂.4H₂O, 5 mL 1 M FeCl₃.6H₂O and 1.5 mL PEI (30% w/v in water) was added dropwise into the NaOH solution during which black precipitate of PEI-CoFe₂O₄ nanoparticles formed. After the addition, the temperature of the reaction mixture was raised to 90 °C and the heating was continued for 1 hr. Finally the reaction mixture was cooled to room temperature and the black precipitate was washed several times with DI water to remove unreacted PEI from nanoparticles, if any. The purified PEI-CoFe₂O₄ nanoparticles were dried in an oven at 60°C overnight for further use.

Characterization of PEI-CoFe2O4 NPs

The formation of pure phase PEI-CoFe₂O₄ NPs was characterized by recording the XRD spectra of powder PEI-CoFe₂O₄ NPs in a Rigaku Miniflex X-ray diffractometer in the angle range of 20° -80° with 5°/min scan rate The presence of (311), (220), (400), (422), (511) and (440) peaks in the XRD pattern denote the formation of CoFe₂O₄ nanoparticles (Fig. S2A).² To characterize the coating of PEI on CoFe₂O₄ NPs, Raman spectra of PEI and PEI-CoFe₂O₄ NPs were recorded in the region where signatures for PEI appear. For recording Raman spectra of PEI, a few drops of liquid PEI were placed on a glass slide and dried in air. For recording Raman spectra of PEI-CoFe₂O₄ NPs, a few drops of nanoparticles dispersion in DI water were placed in a glass slide followed by drying under air prior to the acquisition of spectra. Spectra were recorded in EnSpectr R532 Raman Analyzer using 532 nm Laser. The presence of PEI on the surface of CoFe₂O₄ NPs was ascertained by comparing the signatures of PEI in the Raman spectra^{3, 4} with that of PEI-CoFe₂O₄ NPs (Fig. S2B).

Fig. S1 (A) Normalized Vis absorption spectra, (B) transmission electron microscope image, and (C) statistical distribution of aspect ratio of as-synthesized Au-NRs.

Fig. S2 (A) XRD of PEI-CoFe2O4 NPs, (B) Raman spectra of PEI and PEI-CoFe2O4 NPs after drop coating on a glass slide.

Fig. S3 Vis absorption spectra of Au-NRs after incubating for 7 min at 85 °C in the absence and presence of H_2O_2 and FeCl₃. System contains 20 μ L 2.5 mM FeCl₃, 20 μ L 0.09 % w/v H_2O_2 and 0.2 mL as-synthesized Au-NRs. Final volume and pH of the solution were maintained to 2.0 mL and 1.3, respectively, by HCl.

Fig. S4 Vis absorption spectra of Au-NRs after incubating for 10 min at 85 °C in the absence and presence of FeCl₃. System contains 25 μ L 4 mM FeCl₃ and 0.2 mL as-synthesized Au-NRs. Final volume and pH of the solution were maintained to 2.0 mL and 1.3, respectively, by HCl.

References:

- 1. J. T. Chen, M. Ahmed, Q. Liu and R. Narain, *J Biomed Mater Res A*, 2012, **100**, 2342-2347.
- D. M. Jnaneshwara, D. N. Avadhani, B. Daruka Prasad, B. M. Nagabhushana, H. Nagabhushana, S. C. Sharma, C. Shivakumara, J. L. Rao, N. O. Gopal, S.-C. Ke and R. P. S. Chakradhar, *Journal of Magnetism and Magnetic Materials*, 2013, **339**, 40-45.
- 3. L. Forte, S. Sarda, C. Combes, F. Brouillet, M. Gazzano, O. Marsan, E. Boanini and A. Bigi, *Colloids Surf B Biointerfaces*, 2017, **160**, 493-499.
- 4. T. Ito, Y. Koyama and M. Otsuka, *J Pharm Biomed Anal*, 2010, **51**, 268-272.