Supporting Information

in

A ratiometric electrochemical sensor for detection multiplex cancer biomarkers using bismuth as internal reference and metal sulfide nanoparticles

as signal tags

Lei Yu^{a, b}, Xin Cui^b, Huijuan Li^c, Jianjun Lu^a, Qi Kang^a, Dazhong Shen^{a,*}

^a College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, the Key Lab in Molecular and Nano-materials Probes of the Ministry of Education of China, Shandong Normal University, Jinan 250014, China

^b Shandong Peninsula Engineering Research Center of Comprehensive Brine Utilization,

Weifang University of Science and Technology, Weifang, 262700, China

^c College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, China

--- --- ---

*Corresponding author. Tel.: +86-531-82615258. E-mail address: dzshen@sdnu.edu.cn (D.Z. Shen)

Fig. S1 TEM images of CdS (A), HgS (B), PbS (C), ZnS (D) nanoparticles.

Fig. S2 Repetitive cyclic voltammograms of GCE during the polymerization in 2.0 mM ATA +0.20 mg mL⁻¹ CNTs+ 5.0 mM H₂SO₄ solution. Potential scan rate: 10 mV s⁻¹. Curves *a* to *d* corresponding to scanning cycle number of 1 to 4.

Fig. S3 Repetitive cyclic voltammograms of CNTs-ATA/GCE in 0.1 M $H_2SO_4(a)$ and 5.0 mM MSA+0.1 M $H_2SO_4(b)$. Potential scan rate: 50 mV s⁻¹.

Fig. S4 Influence of pH on the DPASV peak currents (A) and current ratio of target analytes to Bi (B) using the MSA-CNTs-ATA/GCE. The concentrations of Hg(II), Pb(II), Cd(II) and Zn(II) were 30 μg L⁻¹. All the solutions were contained 400 μg L⁻¹ Bi(III)..

Fig. S5 Influence of concentration of Bi(III) on the DPASV peak currents (A) and current ratio of target analytes to Bi (B) using the using the MSA-CNTs-ATA/GCE (pH4.5). The concentrations of Hg(II), Pb(II), Cd(II) and Zn(II) were 30 μg L⁻¹.

Signal tags	Biomarker	Linear range *	LOD *	Refs.
Fc-AuNPs-Ab ₂	CEA	0.05–20	0.01	S1
Cu-CP-Ab ₂	CEA	0.1-100	0.02	S2
Envision/PbS- Ab ₂	CEA	0.001-50	0.0002	S3
Thi-SA/DNA-Ab ₂	CEA	0.0002-0.6	4.8×10 ⁻⁵	S4
ZnS NPs -Ab ₂	CEA	0.003-10	0.00023	This work
Aq-SA/DNA-Ab ₂	AFP	0.0002-0.8	6.2×10 ⁻⁵	S4
Envision/CdS-Ab ₂	AFP	0.001-50	0.0005	S3
Pd/APTES-M-CeO ₂ -GS-Ab ₂	AFP	0.0001-50	3.3×10 ⁻⁵	S5
AuNPs-polymer brush-Ab ₂	AFP	0.01-100	0.0018	S6
PbS NPs -Ab ₂	AFP	0.003-10	0.00011	This work
Cd-CP-Ab ₂	CA125	1-150	0.3	S2
AuNPs-aptamer-HCR	CA125	0.0001-10	5×10 ⁻⁵	S7
AuNP-Lox-Ab ₂	CA125	0.01-100	0.002	S8
Cd NPs -Ab ₂	CA125	0.03-100	0.00068	This work
Pb-CP-Ab ₂	CA19-9	1-150	0.4	S2
$V^{2+}-Ab_2$	CA19-9	0.01-200	0.0039	S 9
HgS NPs-Ab ₂	CA19-9	0.03-100	0.0014	This work

 Table S1
 Comparison of analytical performance of some electrochemical immunosensors

 for the four biomarkers.

* AFP and CEA: ng mL⁻¹, CA125 and CA19-9 : U mL⁻¹

Aq-SA: anthraquinone 2-carboxylic acid-streptavidin, Fc: ferrocene, AuNPs-aptamer-HCR: gold nanoparticles-aptamer-hybridization chain reaction, AuNP-Lox: gold nanoparticle-lactate oxidase, CP: chitosan–poly(acrylic acid) nanospheres, Pd/APTES-M-CeO₂-GS: graphene Oxide and CeO₂ mesoporous nanocomposite functionalized by the 3-aminopropyl-triethoxysilane supported Pd octahedral nanoparticles, Thi-SA : thionine- streptavidin, V^{2+} : bipyridinium.

References

- S1 X.F. Gu, Z. She, T.X. Ma, S. Tian and H.B.Kraatz, *Biosens. Bioelectron.*,2018, **102**, 610 616.
- S2 Q.F. Rong, F. Feng and Z.F. Ma, Biosens. Bioelectron., 2016, 75, 148–154.
- S3 D.Wang, N. Gan, H.R. Zhang, T.H. Li, L. Qiao, Y.T. Cao, X.R. Su and S. Jiang, *Biosens*. *Bioelectron*.,2018, **65**,78–82.
- S4 Q.Zhu, Y.Q.Chai, Y.Zhuo and R. Yuan, *Biosens. Bioelectron.*, 2015, 68,42–48.
- S5 Y.C. Wei, Y.Li, N.Li, Y.Zhang, T. Yan, H.M. Ma and Q.Wei, *Biosens. Bioelectron.*, 2016,79, 482–487.
- S6 H.Q. Wang and Z.F.Ma, Sens. Actuators B,2018, 256,402–407.
- S7 Y. Nie, M. Yang and Y.Ding, Microchim. Acta, 2018, 185,331.
- S8 P.S. Pakchin, H. Ghanbari, R.Saber and Y. Omidi, *Biosens. Bioelectron.*, 2018, 122, 68– 74.
- S9 H. Zhu, G.C. Fan, E.S.Abdel-Halim, J.R.Zhang, J.J.Zhu, Biosens. Bioelectron., 2016, 77, 339–346.