

SUPPLEMENTARY INFORMATION

**Mannitol-induced gold nanoparticle aggregation for the ligand-free detection
of viral particles**

Xue Mi¹, Ellie M. Lucier¹, Dylan G. Turpeinen¹, Eugenia Li Ling Yeo², James Chen Yong Kah^{2,*},
and Caryn L. Heldt^{1,*}

¹Department of Chemical Engineering, Michigan Technological University, USA

²Department of Biomedical Engineering, National University of Singapore, Singapore

*Co-corresponding authors: kah@nus.edu.sg and heldt@mtu.edu

The calculation for concentration of control BSA of 10^{-3} μM based on the same area coverage of 10^8 $\text{MTT}_{50}/\text{mL}$ virus PPV on AuNPs is shown as follows:

Step 1, unit conversion from PPV titer to number of PPV particles:

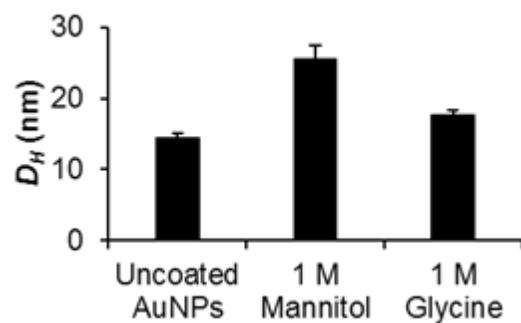
$$10^8 \frac{\text{MTT}_{50}}{\text{mL}} = 8 \log_{10} \left(\frac{\text{MTT}_{50}}{\text{mL}} \right) \times \frac{10^7 \frac{\text{pfu}}{\text{mL}}}{7.8 \log_{10} \left(\frac{\text{MTT}_{50}}{\text{mL}} \right)} \times \frac{1 \times 10^6 \text{ particles}^{**}}{1 \text{ pfu}} = 1.0 \times 10^{13} \frac{\text{particles}}{\text{mL}}$$

$$* 7 \log_{10} \left(\frac{\text{pfu}}{\text{mL}} \right) = 7.8 \log_{10} \left(\frac{\text{MTT}_{50}}{\text{mL}} \right),^1 \text{ thus } 10^7 \frac{\text{pfu}}{\text{mL}} = 7.8 \log_{10} \left(\frac{\text{MTT}_{50}}{\text{mL}} \right)$$

$$** \text{ Infectivity ratio} = \frac{\text{infectious particles}}{\text{total particles}} = 1,000,000,^2$$

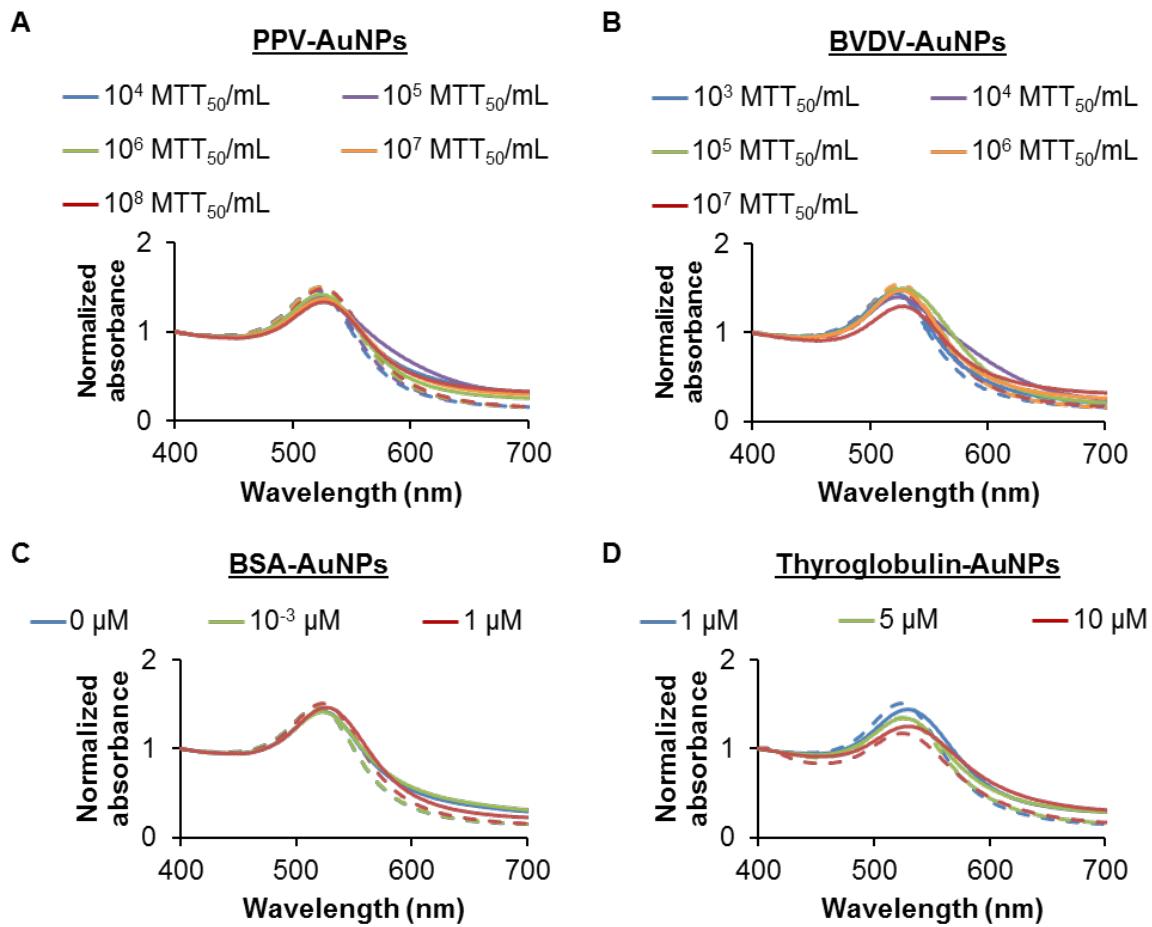
$$\text{thus } 1 \text{ pfu} = 1,000,000 \text{ particles}$$

$$\text{Step 2, coverage area of PPV} = A_{\text{PPV}} = \pi r_{\text{PPV}}^2 = \pi \left(\frac{d_{\text{PPV}}}{2} \right)^2 = \pi \left(\frac{25 \text{ nm}}{2} \right)^2 = 156\pi \text{ nm}^2$$


$$\text{Coverage area of BSA} = A_{\text{BSA}} = \pi r_{\text{BSA}}^2 = \pi \left(\frac{d_{\text{BSA}}}{2} \right)^2 = \pi \left(\frac{6.78 \text{ nm}}{2} \right)^2 = 11.5\pi \text{ nm}^2$$

$$\text{Ratio of coverage area PPV/BSA} = \frac{156\pi \text{ nm}^2}{11.5\pi \text{ nm}^2} = 14$$

Therefore, concentration of control


$$\text{BSA} = \frac{1.0 \times 10^{13} \frac{\text{particles}}{\text{mL}} \times 14}{6 \times 10^{23} \text{ particles/mol}^{***}} \approx 10^{-9} \frac{\text{mol}}{\text{mL}} = 1 \text{ nM} = 10^{-3} \mu\text{M}$$

$$*** \text{ Avogadro's constant} = 6 \times 10^{23} \text{ mol}^{-1},^3 \text{ thus } 1 \text{ mol} = 6 \times 10^{23} \text{ particles}$$

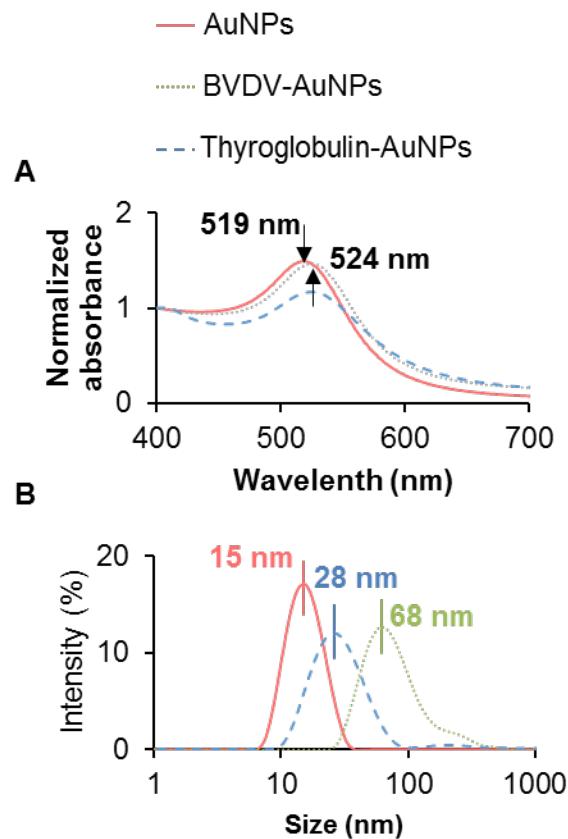


Figure S1 Uncoated AuNPs before and after 1 M osmolyte.

All data points are the average of three separate tests and error bars represent the standard deviation.

Figure S2 UV-Vis absorbance spectra of coated AuNPs before and after 1 M osmolyte. Dashed lines represent coated AuNPs before 1 M mannitol and solid lines represent coated AuNPs after 1 M mannitol.

Figure S3 Characterization of synthesized and BVDV or thyroglobulin coated AuNPs. (A) UV-Vis absorption spectrum, (B) hydrodynamic diameter

REFERENCES

(1) Heldt, C. L.; Hernandez, R.; Mudiganti, U.; Gurgel, P. V.; Brown, D. T.; Carbonell, R. G. A Colorimetric Assay for Viral Agents That Produce Cytopathic Effects. *J. Virol. Methods* **2006**, *135* (1), 56-65.

(2) Muzyczka, N.; Berns, K. I. Parvoviridae: The Viruses and Their Replication. In *Field's Virology*; Knipe, D. M.; Howely, P. M., Eds.; Lippincott Williams & Wilkins: 2001; pp 2327-59.

(3) Prausnitz, J. M. P.; Lichtenthaler, R. N.; Azevedo, E. G. *Molecular Thermodynamics of Fluid-Phase Equilibria*, Third Edition ed.; Prentice Hall PTR: 1999.