Electronic Supplementary Material (ESI)

	5 nm	20 nm	20 nm (PVP)	50 nm
Surface coating	Citrate	Citrate	Polyvinylpyrrolidone (40 kDa)	Citrate
Diameter (TEM)	4.7 ± 1 nm	$19 \pm 3 \text{ nm}$	$20 \pm 3 \text{ nm}$	$48 \pm 5 \text{ nm}$
Hydrodynamic diameter (DLS)	Not reported	25 nm	41 nm	48 nm
Particle number (5 µg mL ⁻¹)	$9.5 imes 10^{12}$	1.5×10^{11}	1.3×10^{11}	7.5×10^{9}
Zeta potential	Not reported	-43 mV	-32 mV	-47 mV

Table S-1. Information of Ag NP based on the one provided by the manufacture.

 Table S-2.
 Operational parameters of the ICP-MS instruments.

For imaging	
TOFWERK	
Time of flight	
1400 W	
15 L min ⁻¹ Ar	
0.9 L min ⁻¹ Ar	
Nickel	
$6,000(m/\Delta m, Full width half$	
maximum: FWHM)	
20 ms	
1.1 L min ⁻¹ Ar	
0.60 L min ⁻¹ He	

Figure S-1. Schematic illustration of 15 areas of interest with red circles on the Ag image of the sample treated with Ag NP (\emptyset 5 nm, citrate) for 48 hours, which is shown as an example.

Figure S-2. Optical photos of MCS treated with each Ag NP (1: Ag NP (ø 5 nm, citrate), 2: Ag NP (ø 20 nm, citrate), 3: Ag NP (ø 20 nm, PVP), 4: Ag NP (ø 50 nm, citrate). a), b) and c) show the results after 0.5, 24 and 48 hours, respectively.

Figure S-3. Optical photographs in thin sections of fibroblast MCSs. Samples incubated for 24 h with Ag NPs with diameters of 5 nm (citrate) (a), 20 nm (citrate) (b), 20 nm (PVP) (c), and 50 nm (citrate) (d). Samples incubated for 48 h with Ag NPs with diameters of 5 nm (citrate) (e), 20 nm (citrate) (f), 20 nm (PVP) (g), and 50 nm (citrate) (h).

Figure S-4. Images of the P concentrations in thin sections of fibroblast MCSs. Samples incubated for 24 h with Ag NPs with diameters of 5 nm (citrate) (a), 20 nm (citrate) (b), 20 nm (PVP) (c), and 50 nm (citrate) (d). Samples incubated for 48 h with Ag NPs with diameters of 5 nm (citrate) (e), 20 nm (citrate) (f), 20 nm (PVP) (g), and 50 nm (citrate) (h).

Figure S-5. Images of the Fe concentrations in thin sections of fibroblast MCSs. Samples incubated for 24 h with Ag NPs with diameters of 5 nm (citrate) (a), 20 nm (citrate) (b), 20 nm (PVP) (c), and 50 nm (citrate) (d). Samples incubated for 48 h with Ag NPs with diameters of 5 nm (citrate) (e), 20 nm (citrate) (f), 20 nm (PVP) (g), and 50 nm (citrate) (h).

Figure S-6. Images of the Cu concentrations in thin sections of fibroblast MCSs. Samples incubated for 24 h with Ag NPs with diameters of 5 nm (citrate) (a), 20 nm (citrate) (b), 20 nm (PVP) (c), and 50 nm (citrate) (d). Samples incubated for 48 h with Ag NPs with diameters of 5 nm (citrate) (e), 20 nm (citrate) (f), 20 nm (PVP) (g), and 50 nm (citrate) (h).

Figure S-7. Images of the Zn concentrations in thin sections of fibroblast MCSs. Samples incubated for 24 h with Ag NPs with diameters of 5 nm (citrate) (a), 20 nm (citrate) (b), 20 nm (PVP) (c), and 50 nm (citrate) (d). Samples incubated for 48 h with Ag NPs with diameters of 5 nm (citrate) (e), 20 nm (citrate) (f), 20 nm (PVP) (g), and 50 nm (citrate) (h).

Figure S-8. Images of the ⁷⁹Br signals in thin sections of fibroblast MCSs. Samples incubated for 24 h with Ag NPs with diameters of 5 nm (citrate) (a), 20 nm (citrate) (b), 20 nm (PVP) (c), and 50 nm (citrate) (d). Samples incubated for 48 h with Ag NPs with diameters of 5 nm (citrate) (e), 20 nm (citrate) (f), 20 nm (PVP) (g), and 50 nm (citrate) (h).

Figure S-9. Schematic illustration of each region to estimate signals of interest in the center region. Yellow lines were drawn by a use of drawing mode in ImageJ. As an example, a phosphorous image of a sample treated with Ag NPs (ø 5 nm, citrate) for 24 hours was used. Green color is showing phosphorous signals more than a threshold set. BG: background.

Figure S-10. Schematic illustration for line scans with using ImageJ among elemental images.

Figure S-11. Scatter plots of Cu (m/z 63) amounts (fg) as average values within pixels where varying amounts of Ag accumulated on sections treated with small Ag NPs (\emptyset 5 nm, citrate) and large Ag NPs (\emptyset 50 nm, citrate) for 48 h. Red dashed lines show linear trendlines. A coefficient of determination (R²) is shown in each plot on the upper right.