SUPPORTING INFORMATION

Photoelectrochemical immunoassay of aflatoxin B₁ in foodstuff based on amorphous TiO₂ and CsPbBr₃ perovskite nanocrystals

Lingshan Su ^a, Ping Tong ^a, Lijia Zhang ^a, Zhongbin Luo ^a, Caili Fu ^a, Dianping Tang ^{a, *}, Yuyu Zhang ^{b,**}

^a College of Biological Sciences and Engineering, Testing Center & Key Laboratory for Analytic Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China

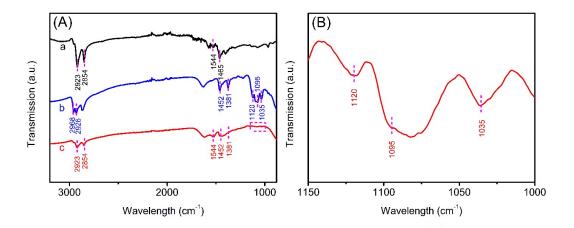
^b School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, 100048, China

^{*} Corresponding author.

^{**} Corresponding author.

E-mail addresses: dianping.tang@fzu.edu.cn (D. Tang), zhangyuyu@btbu.edu.cn (Y. Zhang).

S1.1. Calculation Method for t-Test Statistics


To investigate the method accuracy between two methods, statistical comparison based on the experimental results was carried out with an unpaired Student's *t*-test. The statistics for each sample were calculated by using independent two-sample *t*-test with equal sample sizes and equal variance as follows:

$$t = \frac{|\bar{x}_1 - \bar{x}_2|}{S_{x1x2}} \sqrt{\frac{3}{2}}$$

Where

$$S_{x1x2} = \sqrt{\frac{S_{x1}^2 + S_{x2}^2}{2}}$$

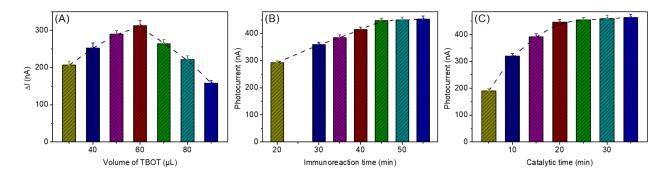

The \bar{x} , S_x , and *n* represent the mean, standard deviation and times of parallel detection of the samples (1, 2 mean the data obtained from the proposed method and referenced method), respectively.

Fig. S1. (A) FTIR spectra of (a) CsPbBr₃ nanocrystals, (b) a-TiO₂, and (c) CsPbBr₃/a-TiO₂ nanocomposites; (B) the magnified FTIR spectra of CsPbBr₃/a-TiO₂ nanocomposites.

As depicted from curve 'a' in Fig. S1, the peaks at 2923, 2854, and 1465 cm⁻¹ could be assigned to the C-H asymmetric stretching vibrations, symmetric stretching vibrations, and in-plane bending vibration, respectively. And the peak at 1544 cm⁻¹ could be contributed to the N-H bending vibration, which is a characteristic band for OAm, confirming the presence of OAm. In the case of pure a-TiO₂ (Fig. S1A, curve 'b'), the bands centered at 1381, 1452, 2926, and 2968 cm⁻¹ were attributed to the

bending vibrations of the -CH₃ and -CH₂ groups. And three characteristic absorption peaks in 1035, 1095, and 1120 cm⁻¹ were contributed to the Ti-O-C vibration (Fig. S1B). The main peaks were all appeared in the CsPbBr₃/a-TiO₂ nanocomposites, preliminarily confirming that the obtained composites contain two fundamental components of CsPbBr₃ and a-TiO₂.

Fig. S2. Effects of (A) volume of TBOT, (B) the competitive immunoreaction time, and (C) the catalytic time (note: $0.1 \text{ ng mL}^{-1} \text{ AFB}_1$ used in the cases, and the error bars represent the standard deviation of three measurements.).

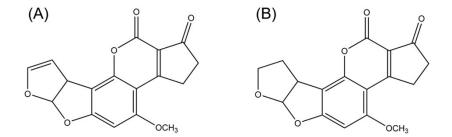


Fig. S3. Structures of (A) AFB₁ and (B) AFB₂.

References

- 1 Z. Li, E. Hofman, J. Li, A. Davis, C. Tung, L. Wu and W. Zheng, Adv. Funct. Mater., 2018, 28, 1704288.
- 2 Z. Li, Y. Zhu, J. Wang, Q. Guo and J. Li, Ceram. Int., 2015, 41, 9057-9062.
- 3 A. Pan, B. He, X. Fan, Z. Liu, J. Urban, A. Alivisatos, L. He and Y. Liu, ACS Nano, 2016, 10, 7943-7954.
- 4 Q. Zhong, M. Cao, H. Hu, D. Yang, M. Chen, P. Li, L. Wu and Q. Zhang, ACS Nano, 2018, 12, 8579-8587.