1	Supporting Information
2	The efficient profiling of serum N-linked glycans by a highly
3	porous 3D graphene composite
4	Huan Niu, ^{a,b} Xin Li, ^{a,b} Jiaxi Peng, ^{a,b} Hongyan Zhang, ^{a,b} Xingyun Zhao, ^{a,b} Xiaoyu
5	Zhou, ^{a,b} Dongping Yu, ^b Xinyu Liu, ^a Ren'an Wu ^{a,*}
6	^a CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of
7	Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
8	^b The University of Chinese Academy of Sciences, Beijing 100049, China
9	
10	Corresponding author:
11	Dr. Ren'an Wu
12	Professor of Chemistry
13	E-mail: wurenan@dicp.ac.cn
14	Tel: +086-411-84379828
15	
16	
17	
18	
19	
20 21	
22	
23	
24	
25	
26	
27	
28	
29	
30 31	
32	

2 Fig. S1. High-resolution XPS spectra of C1s and its deconvolution for the products: (a) pGO/PF; (b)

3 3D graphene.

Fig. S2. Kinetic adsorption curve of β -CD on 3D graphene material.

11 Fig. S3. MALDI-TOF MS analysis of N-linked glycans by using different concentrations of

acetonitrile as eluent: (a) 30% ACN; (b) 50% ACN; (c) 80% ACN. (*, glycans released from
 ovalbumin).

- 3
- 4

Fig. S4. MALDI-TOF MS analysis of N-linked glycans after the enrichment by (a) 5 μL; (b) 10
μL; (c) 20 μL; (d) 30 μL of 3D graphene material suspension (4 mg mL⁻¹). (*, glycans released
from ovalbumin).

9

5

10

12 Fig. S5. Average peak intensity of each N-linked glycan identified by 3D graphene enrichment

from OVA digest. The error bars represent the standard deviations of three parallel tests.

Fig. S6. Direct MALDI-TOF MS analysis of N-linked glycans from OVA digest at the concentrations of 5 ng μ L⁻¹ and 1 ng μ L⁻¹, respectively.

Fig. S7. MALDI-TOF MS analysis of N-linked glycans from OVA digest at the concentration of 0.25 ng μ L⁻¹ by 3D graphene enrichment. The captured N-glycans were marked with * label.

Fig. S8. MALDI-TOF MS analysis of N-linked glycans from a mixture of OVA digest, BSA, and
OVA at mass ratio from 1:500:500 to 1:2000:2000 by PGC enrichment. (*, glycans released from
OVA digest)

Fig. S9. MALDI-TOF MS analysis of N-linked glycans from human serum digestion, (a) direct
analysis, (b) after enrichment with PGC. (The glycan structures were searched by using
GlycoWorkbench based on the molecular weight of the oligosaccharide with the mass accuracy of
1.0 Da. Symbols in composition: Hex= Hexose; HexNAc= N-acetyl hexosamine; dHex= Fucose;
NeuAc= N-acetylneuramic acid, ●mannose; ●galactose; ◆sialic acid; ◇N-glycolyl sialic acid;
▲fucose; ■N-acetyl glucosamine)

Fig. S10. The average peak intensities of β-CD as an internal standard in the control group and the
disease group, respectively. The error bars represent the standard deviations of three parallel
detections by MALDI-TOF MS analysis.

1	Table S1. List of identified 26 N-linked glycans released from ovalbumin enriched by 3D
2	graphene. The glycan structures were searched by using GlycoWorkbench based on the molecular
3	weight of the oligosaccharide with the mass accuracy of 1.0 Da. Symbols in composition: Hex=
4	Hexose; HexNAc= N-Acetyl hexosamine, ● mannose; ○ galactose; ■ N-acetyl glucosamine.
5	

No	M/Z [M+ Na] ⁺	S/N	Structure (M)	Composition
1	933.2	1826.9	>	Hex ₃ HexNAc ₂
2	1095.4	328.8	0-0 0-0-0-0	Hex4HexNAc2
3	1136.4	2529		Hex ₃ HexNAc ₃
4	1257.4	1526.2		Hex ₅ HexNAc ₂
5	1298.4	878.4	••••	Hex4HexNAc3
6	1339.2	1290		Hex ₃ HexNAc ₄
7	1419.3	1498		Hex ₆ HexNAc ₂
8	1460.4	592		Hex5HexNAc3
9	1501.3	762.2		Hex4HexNAc4
10	1542.3	781.6		Hex ₃ HexNAc ₅
11	1581.4	165.2		Hex7HexNAc2
12	1622.1	64.3		Hex ₆ HexNAc ₃
13	1663.2	928.5		Hex5HexNAc4
14	1704.2	698.9		Hex4HexNAc5

15	1745.2	1546.6		Hex ₃ HexNAc ₆
16	1825.1	64.8	•••••	Hex ₆ HexNAc ₄
17	1866.2	692.5		Hex5HexNAc5
18	1907.2	539.2		Hex4HexNAc6
19	1948.2	886.5	>	Hex ₃ HexNAc ₇
20	2028.1	242.6		Hex ₆ HexNAc ₅
21	2069.1	90.2	<u>.</u>	Hex5HexNAc6
22	2110.1	625.9	•	Hex4HexNAc7
23	2151.2	284.2	•	Hex ₈ HexNAc ₄
24	2272.1	159.6	•	Hex4HexNAc7
25	2313.2	289.7	• • •	Hex ₃ HexNAc ₈
26	2475.1	74.9		Hex5HexNAc8

2

Table S2. List of the identified 53 N-linked glycans released from human serum enriched by 3D
graphene. The glycan structures were searched by using GlycoWorkbench based on the molecular
weightof the oligosaccharide with the mass accuracy of 1.0 Da. Symbols in composition: Hex=
Hexose; HexNAc= N-Acetyl hexosamine; dHex= Fucose; NeuAc= N-acetylneuramic acid, ●
mannose; ● galactose; ◆ sialic acid; ◇ N-glycolyl sialic acid; ▲ fucose; ■ N-acetyl
glucosamine.

No	M/Z	S/N	Structure (M)	Composition (M)
1	933.3 [M+Na] ⁺	46.2		Hex ₃ HexNAc ₂
2	1078.9 [M+Na] ⁺	329.9		Hex ₃ HexNAc ₂ dHex ₁
3	1094.9 [M+Na] ⁺	48.2	•••••	Hex ₄ HexNAc ₂
4	1136.4 [M+Na] ⁺	42.9	•	Hex ₃ HexNAc ₃
5	1241.1 [M+Na] ⁺	12.6		Hex4HexNAc2dHex1
6	1257.5 [M+Na] ⁺	221.6		Hex ₅ HexNAc ₂
7	1282.3 [M+Na] ⁺	54.1		Hex ₃ HexNAc ₃ dHex ₁
8	1298.3 [M+Na] ⁺	65.9	<mark>, , , , , , , , , , , , , , , , , , , </mark>	Hex ₄ HexNAc ₃
9	1339.3 [M+Na] ⁺	80.4		Hex ₃ HexNAc ₄
10	1419.5 [M+Na] ⁺	304.9	•-• •-•	Hex ₆ HexNAc ₂
11	1444.4 [M+Na] ⁺	36		Hex4HexNAc3dHex1
12	1485.4 [M+Na] ⁺	1123		Hex ₃ HexNAc ₄ dHex ₁
13	1460.3 [M+Na] ⁺	32.4		Hex ₅ HexNAc ₃
14	1501.4 [M+Na] ⁺	232.9	.:>••	Hex4HexNAc4
15	1542.6 [M+Na]+	46.5		Hex ₃ HexNAc ₅

16	1581.6 [M+Na] ⁺	90.4	<u></u>	Hex ₇ HexNAc ₂
17	1605.2 [M+Na] ⁺	26.1		Hex5HexNAc3dHex1
18	1621.6 [M+Na] ⁺	28.6	•••• >	Hex ₆ HexNAc ₃
19	1647.4 [M+Na] ⁺	1360.7	•••••	Hex4HexNAc4dHex1
20	1663.4 [M+Na] ⁺	599.1		Hex ₅ HexNAc ₄
21	1688.5 [M+Na] ⁺	224.3		Hex ₃ HexNAc ₅ dHex ₁
22	1704.4 [M+Na]+	63.2		Hex4HexNAc5
23	1743.6 [M+Na] ⁺	136		Hex8HexNAc2
24	1752.0 [M+Na] ⁺	203.5		Hex5HexNAc3NeuAc1
25	1792.8 [M+Na]+	12.2	••••	Hex4HexNAc4NeuAc1
26	1809.5 [M+Na] ⁺	907.6		Hex5HexNAc4dHex1
27	1816.5 [M+Na] ⁺	54.1	+	Hex4HexNAc3NeuAc1 dHex1
28	1825.5 [M+Na] ⁺	24		Hex ₆ HexNAc ₄
29	1850.5 [M+Na]+	312.6		Hex4HexNAc5dHex1
30	1866.5 [M+Na]+	42.4		Hex ₅ HexNAc ₅
31	1891.8 [M+Na] ⁺	25.3		$Hex_3HexNAc_6dHex_1$

32	1905.7 [M+Na] ⁺	200		Hex ₉ HexNAc ₂
33	1909.7 [M+Na] ⁺	104	•	Hex4HeNAc6
34	1953.6 [M+Na] ⁺	10.8		Hex4HexNAc4NeuAc1 dHex1
35	1970.5 [M+Na] ⁺	13.3	<	Hex5HexNAc4NeuAc1
36	1976.2 [M+2Na-H]+	429.5	+	Hex5HexNAc4NeuAc1
37	1995.8 [M+Na] ⁺	10.6		Hex4HexNAc5NeuAc1
38	2012.6 [M+Na] ⁺	181.1		Hex5HexNAc5dHex1
39	2028.6 [M+Na] ⁺	27.7		Hex6HeNAc5
40	2056.3 [M+Na] ⁺	34.2		Hex ₆ HexNAc ₃ NeuAc ₁ dHex ₁
41	2067.1 [M+Na] ⁺	17.4		Hex ₁₀ HeNAc ₂
42	2069.8 [M+Na] ⁺	10.4		Hex ₅ HeNAc ₆
43	2122.2 [M+2Na-H]+	199.2	+	Hex5HexNAc4NeuAc1 dHex1
44	2157.2 [M+Na] ⁺	17.4		Hex5HexNAc5NeuAc1
45	2162.8 [M+2Na-H]+	11.3		Hex4HexNAc5NeuAc1 dHex1
46	2174.8 [M+Na] ⁺	16.5		Hex ₆ HexNAc ₅ dHex ₁
47	2199.7 [M+Na] ⁺	26.6		Hex4HexNAc6dHex2

Table S3. List of the significantly changed N-linked glycans between control and disease groups.

/		fold change
m/2	p-value	(Control/ Disease)
1282.3	0.00324	0.82
1298.3	0.00126	0.77
1339.3	0.00158	0.78
1444.4	0.00200	0.80
1460.3	0.00058	0.75
1485.4	0.00372	0.80
1501.4	0.00049	0.74
1647.4	0.00063	0.74
1663.4	0.00251	0.78
1688.5	0.00427	0.82
1704.4	0.00002	0.72
1809.5	0.00129	0.75
1816.5	0.00044	1.33
1825.5	0.00074	0.68
1850.5	0.00004	0.67
1866.5	0.00074	0.64
2012.6	0.00025	0.68
2028.6	0.00219	0.70

3 (setting *p*-value less than 0.01 and fold change between two groups greater than 1.2)